Abstract.With resorcinol as sole source of energy and organic carbon, two stains of gram-negative, nitratereducing bacteria were isolated under strictly anaerobic conditions. Strain LuBResl was facultatively anaerobic and catalase-and superoxide dismutase-positive. This strain was affiliated with Alcaligenes denitrificans on the basis of substrate utilization spectrum and peritrichous flagellation. Strain L u F R e s l could grow only under anaerobic conditions with oxidized nitrogen compounds as electron acceptor. Cells were catalase-negative but superoxide dismutase-positive. Since this strain was apparently an obligate nitrate reducer, it could not be grouped with any existing genus. Resorcinol was completely oxidized to CO2 by both strains. Neither an enzyme activity reducing or hydrolyzing the resorcinol molecule, nor an acyl-CoA-synthetase activating resorcylic acids or benzoate was detected in cell-free extracts of cells grown with resorcinol. In dense cell suspensions, both strains produced a compound which was identified as 5-oxo-2-hexenoic acid by mass spectrometric analysis. This would indicate a direct, hydrolytic cleavage of the resorcinol nucleus without initial reduction.
The Mosaic bioprosthesis demonstrates excellent clinical performance and safety after 13 years of follow-up. Continued follow-up will determine whether this new design will provide increased durability.
Strictly anaerobic bacteria were enriched and isolated from freshwater sediment sources in the presence and absence of sulfate with sorbic acid as sole source of carbon and energy. Strain WoSol, a Gram-negative vibrioid sulfate-reducing bacterium which was assigned to the species Desulfoarculus (formerly Desulfovibrio) baarsii oxidized sorbic acid completely to CO2 with concomitant stoichiometric reduction of sulfate to sulfide. This strain also oxidized a wide variety of fatty acids and other organic compounds. A Gram-negative rod-shaped fermenting bacterium, strain AmSol, fermented sorbic acid stoichiometrically to about equal amounts of acetate and butyrate. At concentrations higher than 10 mM, sorbic acid fermentation led to the production of pentanone-2 and isopentanone-2 (3-methyl-2-butanone) as byproducts. Strain AmSol fermented also crotonate and 3-hydroxybutyrate to acetate and butyrate, and hexoses to acetate, ethanol, hydrogen, and formate. The guanine-plus-cytosine content of the DNA was 41.8 + 1.0 mol%. Sorbic acid at concentrations higher than 5 mM inhibited growth of this strain while strain WoSol tolerated sorbic acid up to 10 mM concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.