Adipose tissue contains an abundant source of multipotent mesenchymal cells termed ''adipose-derived stromal cells'' (ASCs) that hold potential for regenerative medicine. However, the heterogeneity inherent to ASCs harvested using standard methodologies remains largely undefined, particularly in regards to differences across donors. Identifying the subpopulations of ASCs predisposed toward differentiation along distinct lineages holds value for improving graft survival, predictability, and efficiency. Human ASCs (hASCs) from three different donors were independently isolated by density-based centrifugation from adipose tissue and maintained in culture or differentiated along either adipogenic or osteogenic lineages using differentiation media. Undifferentiated and differentiated hASCs were then analyzed for the presence of 242 human surface markers by flow cytometry analysis. By comprehensively characterizing the surface marker profile of undifferentiated hASCs using flow cytometry, we gained novel insights into the heterogeneity underlying protein expression on the surface of cultured undifferentiated hASCs across different donors. Comparison of the surface marker profile of undifferentiated hASCs with hASCs that have undergone osteogenic or adipogenic differentiation allowed for the identification of surface markers that were upregulated and downregulated by osteogenic or adipogenic differentiation. Osteogenic differentiation induced upregulation of CD164 and downregulation of CD49a, CD49b, CD49c, CD49d, CD55, CD58, CD105, and CD166 while adipogenic differentiation induced upregulation of CD36, CD40, CD146, CD164, and CD271 and downregulation of CD49b, CD49c, CD49d, CD71, CD105, and CD166. These results lend support to the notion that hASCs isolated using standard methodologies represent a heterogeneous population and serve as a foundation for future studies seeking to maximize their regenerative potential through fluorescence-activated cell sorting-based selection before therapy.
Cell-based therapy is an emerging paradigm in skeletal regenerative medicine. However, the primary means by which transplanted cells contribute to bone repair and regeneration remain controversial. To gain an insight into the mechanisms of how both transplanted and endogenous cells mediate skeletal healing, we used a transgenic mouse strain expressing both the topaz variant of green fluorescent protein under the control of the collagen, type I, alpha 1 promoter/enhancer sequence (Col1a1 GFP ) and membrane-bound tomato red fluorescent protein constitutively in all cell types (R26 mTmG ). A comparison of healing in parietal versus frontal calvarial defects in these mice revealed that frontal osteoblasts express Col1a1 to a greater degree than parietal osteoblasts. Furthermore, the scaffold-based application of adipose-derived stromal cells (ASCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), and osteoblasts derived from these mice to critical-sized calvarial defects allowed for investigation of cell survival and function following transplantation. We found that ASCs led to significantly faster rates of bone healing in comparison to BM-MSCs and osteoblasts. ASCs displayed both increased survival and increased Col1a1 expression compared to BMMSCs and osteoblasts following calvarial defect transplantation, which may explain their superior regenerative capacity in the context of bone healing. Using this novel reporter system, we were able to elucidate how cell-based therapies impact bone healing and identify ASCs as an attractive candidate for cell-based skeletal regenerative therapy. These insights potentially influence stem cell selection in translational clinical trials evaluating cell-based therapeutics for osseous repair and regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.