High surface area nanorods of titanium dioxide were grown by oblique angle deposition on a transparent substrate to investigate their effectiveness as photocatalytic agents for the destruction of organic contaminants in air and water. Optical transmission measurements were made that allowed for an estimation of the porosity of the film (75%-78%). Comparing transmission measurements with those from a dense anatase film showed that the penetration depth for the light into the nanorod film was 2.5 times that in a dense, anatase film. The photocatalytic degradation of indigo carmine dye on the porous films was shown to depend on film thickness and annealing conditions. The effectiveness of the film was assessed by observing the change in absorbance of the dye at 610 nm over time and quantifying the film performance using a pseudo-first-order reaction rate model. Reaction rates increased as the film thickness increased from 600 nm to 1000 nm, but leveled out or decreased at thicknesses beyond 1500 nm. A transport/reaction model was used to show that there exists an optimal geometry that maximizes the overall reaction rate and that such a geometry can be simply produced using glancing angle deposition. The nanorod films were benchmarked against nanoparticle films and were shown to perform as well as 0.73 g/L of 25-nm-diameter anatase nanoparticles with surface area of 50 m2/g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.