The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 µm to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.
This paper describes a multiple‐criteria decision support system (MCDSS) for the selection of the most appropriate contractor. The system can accommodate the unique characteristics of a project in addition to the qualifications and capabilities of those contractors assessed. The system first evaluates the list of contractors by matching their qualifications with specific project conditions. A short list of eligible contractors is thus selected and further the MCDSS compares the current capabilities of the short listed contractors and their plans for the project under consideration, to select the most appropriate contractor. The Delphi method was used to evoke expertise and obtain reliable assessment values for all criteria related to the contractor qualification, while the analytic hierarchy process (AHP) was used to assess the specific project conditions. The system can be easily modified to adopt specific conditions of the proposed project and also to facilitate the decision maker in explaining the reasons for the elimination of excluded contractor.
Construction 4.0 is the adoption and adaptation of the Industry 4.0 framework for the construction sector. Industry 4.0 promises to revolutionize how ‘things’ are made by using physical and digital technologies in an integrated manner. Similarly, the authors envision that the Construction 4.0 framework can fundamentally change the way that assets are designed, constructed, and operated. The idea of the Construction 4.0 developed from the need of the construction sector to overcome the existing horizontal, vertical, and longitudinal fragmentation and to take a holistic approach to the improvements needed in the industry. In this study, a literature review of Industry 4.0 and its influence on the construction sector was undertaken. Based on this systematic literature review, the authors define the Construction 4.0 framework and provide its benefits and barriers to implementation. A key finding of the study is that building information modeling, and a common data environment form the key foundation for the implementation of the Construction 4.0 framework. In defining the Construction 4.0 framework, the paper described its components and how its implementation is likely to proceed. The authors envision that by adopting Construction 4.0, the industry can transform itself into a highly efficient, quality-centered, and safe industry capable of successfully delivering the demands placed on it by society.
The morphology and biaxial texture of vacuum evaporated CaF(2) films on amorphous substrates as a function of vapour incident angle, substrate temperature and film thickness were investigated by scanning electron microscopy, x-ray pole figure and reflection high energy electron diffraction surface pole figure analyses. Results show that an anomalous [220] out-of-plane texture was preferred in CaF(2) films deposited on Si substrates at < 200 °C with normal vapour incidence. With an increase of the vapour incident angle, the out-of-plane orientation changed from [220] to [111] at a substrate temperature of 100 °C. In films deposited with normal vapour incidence, the out-of-plane orientation changed from [220] at 100 °C to [111] at 400 °C. In films deposited with an oblique vapour incidence at 100 °C, the texture changed from random at small thickness (5 nm) to biaxial at larger thickness (20 nm or more). Using first principles density functional theory calculation, it was shown that [220] texture formation is a consequence of energetically favourable adsorption of CaF(2) molecules onto the CaF(2)(110) facet.
This paper describes a multiple-criteria decision support system (MCDSS) for the selection of the most appropriate contractor. The system can accommodate the unique characteristics of a project in addition to the quali®cations and capabilities of those contractors assessed. The system ®rst evaluates the list of contractors by matching their quali®cations with speci®c project conditions. A short list of eligible contractors is thus selected and further the MCDSS compares the current capabilities of the short listed contractors and their plans for the project under consideration, to select the most appropriate contractor.The Delphi method was used to evoke expertise and obtain reliable assessment values for all criteria related to the contractor quali®cation, while the analytic hierarchy process (AHP) was used to assess the speci®c project conditions. The system can be easily modi®ed to adopt speci®c conditions of the proposed project and also to facilitate the decision maker in explaining the reasons for the elimination of excluded contractor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.