The antilocalization effect in a compensated HgCdTe film is observed. With an applied microwave field, both the zero-magnetic-field conductance and the dephasing time are enhanced nonlinearly with microwave power. The observation concerning the dephasing time is inconsistent with a heating mechanism. Such behavior is also in contrast to the microwave-induced suppression of weak-antilocalization and dephasing time seen for a two-dimensional electron gas of the anodic-oxidized HgCdTe. The nonlinear increase in zero-magnetic-field conductance is consistent with a microwave-assisted-hopping mechanism. The increased dephasing time can be explained qualitatively by the microwave-assisted-hopping mechanism and a microwave-induced increase in the electron density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.