We consider the general case of an accelerating, expanding and shearing model of a radiating relativistic star using Lie symmetries. We obtain the Lie symmetry generators that leave the equation for the junction condition invariant, and find the Lie algebra corresponding to the optimal system of the symmetries. The symmetries in the optimal system allow us to transform the boundary condition to ordinary differential equations. The various cases for which the resulting systems of equations can be solved are identified. For each of these cases the boundary condition is integrated and the gravitational potentials are found explicitly. A particular group invariant solution produces a class of models which contains Euclidean stars as a special case. Our generalized model satisfies a linear equation of state in general. We thus establish a group theoretic basis for our generalized model with an equation of state. By considering a particular example we show that the weak, dominant and strong energy conditions are satisfied.Comment: 15 pages, Submitted for publicatio
We consider a relativistic radiating spherical star in conformally flat spacetimes. In particular we study the junction condition relating the radial pressure to the heat flux at the boundary of the star which is a nonlinear partial differential equation. The Lie symmetry generators that leave the equation invariant are identified and we generate an optimal system. Each element of the optimal system is used to reduce the partial differential equation to an ordinary differential equation which is further analysed. We identify new categories of exact solutions to the boundary conditions. Two classes of solutions are of interest. The first class depends on a self similar variable. The second class is separable in the spacetime variables.
A systematic analysis of the junction condition, relating the radial pressure with the heat flow in a shearfree relativistic radiating star, is undertaken. This is a highly nonlinear partial differential equation in general. We obtain the Lie point symmetries that leave the boundary condition invariant. Using a linear combination of the symmetries, we transform the junction condition into ordinary differential equations. We present several new exact solutions to the junction condition. In each case we can identify the exact solution with a Lie point generator. Some of the solutions obtained satisfy the linear barotropic equation of state. As a special case we regain the conformally flat models which were found previously. Our analysis highlights the interplay between Lie algebras, nonlinear differential equations and application to relativistic astrophysics.
We consider the general model of an accelerating, expanding and shearing radiating star in the presence of charge. Using a new set of variables arising from the Lie symmetries of differential equations we transform the boundary equation into ordinary differential equations. We present several new exact models for a charged gravitating sphere. A particular family of solution may be interpreted as a generalised Euclidean star in the presence of the electromagnetic field. This family admits a linear barotropic equation of state. In the uncharged limit, we regain general relativistic stellar models where proper and areal radii are equal, and its generalisations. Our group theoretical approach selects the physically important cases of Euclidean stars and equations of state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.