We consider the general case of an accelerating, expanding and shearing model
of a radiating relativistic star using Lie symmetries. We obtain the Lie
symmetry generators that leave the equation for the junction condition
invariant, and find the Lie algebra corresponding to the optimal system of the
symmetries. The symmetries in the optimal system allow us to transform the
boundary condition to ordinary differential equations. The various cases for
which the resulting systems of equations can be solved are identified. For each
of these cases the boundary condition is integrated and the gravitational
potentials are found explicitly. A particular group invariant solution produces
a class of models which contains Euclidean stars as a special case. Our
generalized model satisfies a linear equation of state in general. We thus
establish a group theoretic basis for our generalized model with an equation of
state. By considering a particular example we show that the weak, dominant and
strong energy conditions are satisfied.Comment: 15 pages, Submitted for publicatio
We study the effects of pressure anisotropy and heat dissipation in a spherically symmetric radiating star undergoing gravitational collapse. An exact solution of the Einstein field equations is presented in which the model has a Friedmann-like limit when the heat flux vanishes. The behaviour of the temperature profile of the evolving star is investigated within the framework of causal thermodynamics. In particular, we show that there are significant differences between the relaxation time for the heat flux and the relaxation time for the shear stress.
An approach for determining a class of master partial differential equations from which Type II hidden point symmetries are inherited is presented. As an example a model nonlinear partial differential equation (PDE) reduced to a target PDE by a Lie symmetry gains a Lie point symmetry that is not inherited (hidden) from the original PDE. On the other hand this Type II hidden symmetry is inherited from one or more of the class of master PDEs. The class of master PDEs is determined by the hidden symmetry reverse method. The reverse method is extended to determine symmetries of the master PDEs that are not inherited. We indicate why such methods are necessary to determine the genesis of Type II symmetries of PDEs as opposed to those that arise in ordinary differential equations (ODEs).
The provenance of Type II hidden point symmetries of differential equations reduced from nonlinear partial differential equations is analyzed. The hidden symmetries are extra symmetries in addition to the inherited symmetries of the differential equations when the number of independent and dependent variables is reduced by a Lie point symmetry. These Type II hidden symmetries do not arise from contact symmetries or nonlocal symmetries as in the case of ordinary differential equations. The Lie point symmetries of a model equation and the two-dimensional Burgers' equation and their descendants are used to identify the hidden symmetries. The significant new result is the provenance of the Type II Lie point hidden symmetries found for differential equations reduced from partial differential equations. Two methods for determining the source of the hidden symmetries are developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.