Natural hybridization and introgression are central evolutionary processes in grape genus (Vitis). On the other hand, the interspecific relationships among grapes, the directionality of the inferred admixture events and the parents of hybrids are not yet completely clarified. The grapes are economically important crops characterized by tendrils used to climb on the trees and the fruits harvested by humans especially for the consumption or to produce wines and liquors. The American grapes (ca. 30 species) are recognized as an important resource because they show biotic and abiotic resistances. We analyzed 3,885 genomewide SNPs from 31 American Vitis species using the TreeMix software combined with the f3 and f4 tests. This approach allowed us to infer phylogenetic relationships and to explore the natural admixture among taxa. Our results confirmed the existence of all hybrid species recognized in literature (V. x champinii, V. x doaniana, V. x novae-angliae, and V. x slavinii), identifying their most likely parent species and provided evidence of additional gene flows between distantly related species. We discuss our results to elucidate the origin of American wild grapes, demonstrating that admixture events have ancient origins. We observe that gene flows have involved taxa currently spread through the southern regions of North America. Consequently, we propose that glacial cycles could have triggered the contact between interfertile taxa promoting local hybridization events. We conclude by discussing the phylogenetic implications of our findings and showing that TreeMix can provide novel insights into the evolutionary history of grapes.
Vitis vinifera ssp. silvestris, the spontaneous subspecies of V. vinifera L., is believed to be the ancestor of present grapevine cultivars. In this work, polymorphism at 13 SSR loci was investigated to answer the following key question: are wild plants (i) true silvestris, (ii) hybrids between wild and cultivated plants or (iii) or 'escapes' from vineyards? In particular, the objective of the present study was to identify truly wild individuals and to search for possible hybridization events. The study was performed in Sardinia, the second largest island in the Mediterranean Sea, which is characterized by a large and well-described number of both grape cultivars and wild populations. This region was ideal for the study because of its spatial isolation and, consequently, limited contamination from outside material. The results of this study show that domesticated and wild grapevine germplasms are genetically divergent and thus are real silvestris. Pure lineages (both domesticated and wild) show very high average posterior probabilities of assignment to their own clusters, with a low level of introgression.
Vitis vinifera subsp. silvestris, the wild subspecies of Vitis vinifera L., is a unique and valuable genetic resource for cultivated grapevines. At present, this wild form is rare and is spread from the Southern Atlantic coast of Europe to the Western Himalayas. In the present study, six nuclear microsatellite DNAs were analysed in 301 wild grape samples, using factorial correspondence analysis and the Bayesian model. The aim was to detect the distribution of genetic variability and admixture proportions and thus to identify the main routes of recolonization after the quaternary glaciation, as well as signals of secondary contacts in Europe. The results obtained show that some Caucasus and Italian areas played key roles as refugial areas. Moreover, the data suggest the existence of two main migration routes through central Europe during the post-glacial or the inter-glacial periods. The first started from Southern Italy and moved northward, whereas the second originated from refugia possibly located in eastern areas and migrated westwards. This scenario is most likely associated with the population expansion that followed the European Quaternary glaciations. In accordance with this assumption, central Europe is proposed as an admixture confluence of migration routes radiating from separate grapevine refugia.
Primula allionii is endemic to a tiny area of the Maritime Alps and has one of the narrowest distribution ranges in this hotspot of biodiversity. Phylogeographical patterns in P. allionii were studied using plastid DNA markers and dominantly inherited markers (AFLP and ISSR) to verify any admixture between P. allionii and the sympatric P. marginata and to detect the phylogeographical history of the species. Morphometric measurements of flowers and admixture analysis support the hypothesis that hybridization occurs in nature. Species distribution models using two climate models (CCSM and MIROC) suggested a reduction in habitat suitability during cold periods. Phylogeographical analysis suggested an old allopatric divergence during the mid‐Pleistocene transition (about 0.8 Mya) without recolonization/contraction cycles. The Alps watershed does not act as a strong barrier between the two main areas of the distribution range, and moderate gene flow by pollen seems to create the admixture recorded among the stands. According to our results, the persistence of P. allionii throughout the Ice Age appears to be linked to the capacity of the Maritime Alps to provide a wide diversity of microhabitats consistent with the recent biogeographical pattern proposed for the Mediterranean Basin. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173, 637–653.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.