Previously, we reported that intracellular Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis were present within buccal epithelial cells from human subjects, as lesser components of a polymicrobial flora. In this study, we further characterized that intracellular flora by using the same double-labeling techniques to identify Fusobacterium nucleatum, Prevotella intermedia, oral Campylobacter species, Eikenella corrodens, Treponema denticola, Gemella haemolysans, Granulicatella adiacens, and total streptococci within buccal epithelial cells. All those species were found within buccal cells. In every case, species recognized by green-labeled species-specific probes were accompanied by other bacteria recognized only by a red-labeled universal probe. Streptococci appeared to be a major component of the polymicrobial intracellular flora, being present at a level from one to two logs greater than the next most common species (G. adiacens). This is similar to what is observed in oral biofilms, where diverse species interact in complex communities that often are dominated by streptococci.
Our data suggest that S. cristatus may exert immunomodulatory effects on the interleukin-8 response of oral epithelial cells to F. nucleatum challenge.
The mechanism by which S. cristatus attenuates F. nucleatum-induced proinflammatory responses in oral epithelial cells appears to involve blockade of NF-κB nuclear translocation at the level of IκB-α degradation.
SUMMARYWe previously reported that Streptococcus cristatus, an oral commensal, was able to downregulate the interleukin-8 (IL-8) response to Fusobacterium nucleatum, a putative oral pathogen in oral epithelial cells. The aim of this study was to extend the understanding of how S. cristatus regulates cytokine expression in oral epithelial cells on a broad basis, and investigate whether the modulation of a Toll-like receptor (TLR) pathway was involved in this process. KB and TERT-2 cells were co-cultured with F. nucleatum and S. cristatus, either alone or in combination. Total RNA was extracted and pathway-specific focused microarrays were used to profile the transcriptional responses of various cytokine genes and those related to TLR-mediated signal transduction. Reverse transcription-polymerase chain reactions (RT-PCR) and protein assays were performed to confirm the microarray results for selected genes. We found that exposure to either S. cristatus or F. nucleatum alone led to distinct changes in cytokine expression patterns. Fusobacterium nucleatum induced a greater number of gene expression changes than S. cristatus (15% vs 4%, respectively). The presence of S. cristatus with F. nucleatum attenuated the expression of a number of inflammatory cytokines, and upregulated several anti-inflammatory mediators. The RT-PCR confirmed the messenger RNA attenuation of IL-1α, tumor necrosis factor-α and IL-6 by S. cristatus. Profiling of TLR-signaling-related genes revealed that S. cristatus most significantly impacted the downstream pathways, especially nuclear factor-κB, rather than altering TLRs and their adaptors and interacting proteins. Our data suggest that S. cristatus may attenuate the epithelial proinflammatory cytokine response to F. nucleatum by influencing pathways converging on nuclear factor-κB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.