Recently immunoglobulin G (IgG) was found to be produced by neoplasms and promote tumor growth in cancer cell lines and animal models. To investigate the pathophysiological significance of cancer-produced IgG in breast cancer, we examined the expressions of IgG in 68 breast cancers including 40 primary cancers without metastasis and 28 cancers with axillary lymph node metastases. IgG gene expression was detected in all these samples. We found that IgG-expressing cancer cells were predominantly located in the periphery of the primary cancer nest and that these cells showed more cellular atypia and nuclear pleomorphism. We also found that the abundance of IgG-expressing cancer cells was higher and the cells were more evenly distributed in the metastatic cancer cells than that in the primary lesion. These findings suggest that IgG-expressing breast cancer cells have a more aggressive biological behavior than the IgG negative cancer cells and it could be an indicator for progression and metastasis of the disease. Co-localization of IgG and C1q complement was detected in both primary and metastatic lesions implying that immune complexes might be formed in situ. We speculate that such immune complexes might facilitate immune escape of cancer cells. Our findings suggest that locally produced IgG plays important roles in breast cancer, and may serve as a potential therapeutic target.
Introduction:The unilateral ureteral obstruction (UUO) model is the most extensively used model to investigate chronic renal fibrosis. Macrophages play a critical role in the UUO model. We aimed to analyze the phenotype of macrophages from different sources activated in vitro and explore the role of M1 macrophages from various sources in UUO.Material and methods: C57BL/6 mice were randomly allocated to five different groups (n = 5 per group): the sham-operated control group, PBS-treated (UUO + PBS) group, bone marrow-derived M1 macrophage-treated (UUO + BM1) group, peritoneal M1 macrophage-treated (UUO + PM1) group, and splenic M1 macrophage-treated (UUO + SPM1) group. After M1 macrophages were injected into the tail vein of UUO-treated mice, renal fibrosis indexes were determined using HE, Masson staining, and α-SMA.Results: Compared to those in the UUO + PBS group, the pathological changes were much more severe in the UUO + BM1, UUO + PM1, and UUO + SPM1 groups. Compared to that in the UUO + PBS group, UUO + BM1 group, and UUO + SPM1 group, the collagen area in the UUO + PM1 group was higher at post-UUO day 5 (p < 0.01). The expression of α-SMA in the UUO + PM1 group was higher than that in the UUO + PBS group, UUO + BM1 group, and UUO + SPM1group (p < 0.001).Conclusions: The M1 macrophages cultured in vitro were reinjected into mice and aggravated kidney injury and fibrosis. Compared with BM1 and SPM1, PM1 demonstrated a stronger effect on inducing renal injury and fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.