Often machine learning programs inherit social patterns reflected in their training data without any directed effort by programmers to include such biases. Computer scientists call this algorithmic bias. This paper explores the relationship between machine bias and human cognitive bias. In it, I argue similarities between algorithmic and cognitive biases indicate a disconcerting sense in which sources of bias emerge out of seemingly innocuous patterns of information processing. The emergent nature of this bias obscures the existence of the bias itself, making it difficult to identify, mitigate, or evaluate using standard resources in epistemology and ethics. I demonstrate these points in the case of mitigation techniques by presenting what I call 'the Proxy Problem'. One reason biases resist revision is that they rely on proxy attributes, seemingly innocuous attributes that correlate with socially-sensitive attributes, serving as proxies for the socially-sensitive attributes themselves. I argue that in both human and algorithmic domains, this problem presents a common dilemma for mitigation: attempts to discourage reliance on proxy attributes risk a tradeoff with judgement accuracy. This problem, I contend, admits of no purely algorithmic solution.
What is a bias? Standard philosophical views of both implicit and explicit bias focus this question on the representations one harbours, for example, stereotypes or implicit attitudes, rather than the ways in which those representations (or other mental states) are manipulated. I call this approach representationalism. In this paper, I argue that representationalism taken as a general theory of psychological social bias is a mistake, because it conceptualizes bias in ways that do not fully capture the phenomenon. Crucially, this view fails to capture a heretofore neglected possibility of bias, one that influences an individual’s beliefs about or actions toward others, but is, nevertheless, nowhere represented in that individual’s cognitive repertoire. In place of representationalism, I develop a functional account of psychological social bias which characterizes it as a mental entity that takes propositional mental states as inputs and returns propositional mental states as outputs in a way that instantiates social-kind inductions. This functional characterization leaves open which mental states and processes bridge the gap between the inputs and outputs, ultimately highlighting the diversity of candidates that can serve this role.
The possibilities of unconscious perception and unconscious bias prompt parallel debates about unconscious mental content. This chapter argues that claims within these debates alleging the existence of unconscious content are made fraught by ambiguity and confusion with respect to the two central concepts they involve: consciousness and content. Borrowing conceptual resources from the debate about unconscious perception, the chapter distills the two conceptual puzzles concerning each of these notions and establishes philosophical strategies for their resolution. It then argues that empirical evidence for unconscious bias falls victim to these same puzzles, but that progress can be made by adopting similar philosophical strategies. Throughout, the chapter highlights paths forward in both debates, illustrates how they serve as fruitful domains in which to study the relationship between philosophy and empirical science, and uses their combined study to further understanding of a general theory of unconscious content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.