Composites of Ag and TiO2 nanoparticles on cotton fabrics were synthetized in-situ by sono-chemical and hydrothermal methods achieving the successive formation of Ag-NPs and Ti-NPs directly on the fabric. The impregnated fabrics were characterized by ATR-FTIR spectroscopy, high resolution microscopy (HREM), scanning electron microscopy coupled with Ener-gy-dispersive X-ray spectroscopy (SEM-EDS), Raman, photoluminescence, UV-vis and DRS spectroscopies and by tension tests. Results showed the successful formation and impregnation of NPs on the cotton fabric, with a negligible leaching of NPs after several washing cycles. The photocatalytic activity of supported NPs was assessed by the degradation of methyl blue dye (MB) under solar and UV irradiation revealing improved photocatalytic activity of the Ag-TiO2/cotton composites due to a synergy of both Ag and TiO2 nanoparticles. This behavior is attributed to a diminished electron-hole recombination effect in the Ag-TiO2 cotton samples. The biocide activity of these composites on the growth inhibition of Staphylococcus aureus (Gram+) and Escherichia coli (Gram-) was confirmed, revealing interesting possibilities for the utilization of the functionalized cotton fabric as protective cloth for medical applications.
Composites of Ag and TiO2 nanoparticles were synthesized in situ on cotton fabrics using sonochemical and solvothermal methods achieving the successive formation of Ag-NPs and Ti-NPs directly on the fabric. The impregnated fabrics were characterized using ATR-FTIR spectroscopy; high-resolution microscopy (HREM); scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS); Raman, photoluminescence, UV-Vis, and DRS spectroscopies; and by tensile tension tests. Results showed the successful formation and impregnation of NPs on the cotton fabric, with negligible leaching of NPs after several washing cycles. The photocatalytic activity of supported NPs was assessed by the degradation of methyl blue dye (MB) under solar and UV irradiation revealing improved photocatalytic activity of the Ag–TiO2/cotton composites due to a synergy of both Ag and TiO2 nanoparticles. This behavior is attributed to a diminished electron–hole recombination effect in the Ag–TiO2/cotton samples. The biocide activity of these composites on the growth inhibition of Staphylococcus aureus (Gram+) and Escherichia coli (Gram−) was confirmed, revealing interesting possibilities for the utilization of the functionalized cotton fabric as protective cloth for medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.