The aim of the present study was to evaluate the effects of a single treatment with FSH on diameter of the largest follicle and on conception rates of suckled Bos indicus beef cows submitted to timed artificial insemination (TAI). Four hundred fifty-six suckled anestrous Nelore beef cows at 30-60 days postpartum were assigned to treatments. At the first day of the estrous synchronization protocol (Day 0), all cows received a progesterone-releasing intravaginal device plus 2mg of estradiol benzoate. On Day 8, cows were assigned to blocks according to the diameter of the largest follicle and then allocated to one of three treatment groups (Control, FSH, or eCG) within each block. Simultaneously to progesterone device withdrawal on Day 8, cows in the eCG treatment group (n=150) received 300 IU of eCG and cows in FSH treatment group (n=153) received 10mg of FSH, and Control cows (n=153) did not receive any additional treatment. Additional treatments with 150 μg of cloprostenol and 1mg of estradiol cypionate (EC) were also administered concurrently to progesterone device removal in all cows on Day 8. Two days later (D10), TAI and ovarian ultrasonic examinations to evaluate follicle size were performed in all cows. On Day 12, a subset of cows (n=389) were submitted a second ultrasonic exam to confirm ovulation. Final follicular growth (mm/day) was less (P=0.006) in both Control (0.95±0.11) and in FSH-treated cows (0.90±0.10) than in eCG-treated cows (1.40±0.13). Interestingly, there was a treatment-by-BCS interaction in ovulation results (P=0.03), in which, eCG treatment increased percentage of cows having ovulations with a lesser BCS. Similarly, there was a treatment-by-BCS interaction for conception (P=0.04), where the eCG treatment increased fertility in cows with a lesser BCS. In conclusion, FSH failed to stimulate final follicular growth, ovulation, and conception rate in sucked-anestrous beef cows submitted to TAI as effectively as eCG. However, physiological effects of eCG seem to be more evident in cows with a lesser BCS.
The objective was to evaluate the effects of timing of insemination and type of semen in cattle subjected to timed artificial insemination (TAI). In Experiment 1, 420 cyclic Jersey heifers were bred at either 54 or 60 h after P4-device removal, using either sex-sorted (2.1 × 10(6) sperm/straw) or non-sorted sperm (20 × 10(6) sperm/straw) from three sires (2 × 2 factorial design). There was an interaction (P = 0.06) between time of AI and type of semen on pregnancy per AI (P/AI, at 30 to 42 d after TAI); it was greater when sex-sorted sperm (P < 0.01) was used at 60 h (31.4%; 32/102) than at 54 h (16.2%; 17/105). In contrast, altering the timing of AI did not affect conception results with non-sorted sperm (54 h = 50.5%; 51/101 versus 60 h = 51.8%; 58/112; P = 0.95). There was an effect of sire (P < 0.01) on P/AI, but no interaction between sire and time of AI (P = 0.88). In Experiment 2, 389 suckled Bos indicus beef cows were enrolled in the same treatment groups used in Experiment 1. Sex-sorted sperm resulted in lower P/AI (41.8%; 82/196; P = 0.05) than non-sorted sperm (51.8%; 100/193). In addition, there was a tendency for greater P/AI (P = 0.11) when TAI was performed 60 h (50.8%; 99/195) versus 54 h (42.8%; 83/194) after removing the progestin implant. In Experiment 3, 339 suckled B. indicus cows were randomly assigned to receive TAI with sex-sorted sperm at 36, 48, or 60 h after P4 device removal. Ultrasonographic examinations were performed twice daily in all cows to confirm ovulation. On average, ovulation occurred 71.8 ± 7.8 h after P4 removal, and greater P/AI was achieved when insemination was performed closer to ovulation. The P/AI was greatest (37.9%) for TAI performed between 0 and 12 h before ovulation, whereas P/AI was significantly less for TAI performed between 12.1 and 24 h (19.4%) or >24 h (5.8%) before ovulation. In conclusion, sex-sorted sperm resulted in a lesser P/AI than non-sorted sperm following TAI. However, improvements in P/AI with delayed time of AI were possible (Experiments 1 and 3), and seemed achievable when breeding at 60 h following progestin implant removal, compared to the standard 54 h normally used in TAI protocols.
The effects of estradiol benzoate (EB) and estradiol cypionate (EC) on induction of ovulation after a synchronized LH surge and on fertility of Bos indicus females submitted to timed AI (TAI) were evaluated. In Experiment 1, ovariectomized Nelore heifers were used to evaluate the effect of EB (n = 5) and EC (n = 5) on the circulating LH profile. The LH surge timing (19.6 and 50.5 h; P = 0.001), magnitude (20.5 and 9.4 ng/mL; P = 0.005), duration (8.6 and 16.5 h; P = 0.001), and area under the LH curve (158.6 and 339.4 ng/mL; P = 0.01) differed between the EB and EC treatments, respectively. In Experiment 2 (follicular responses; n = 60) and 3 (pregnancy per AI; P/AI; n = 953) suckled Bos indicus beef cows submitted to an estradiol/progesterone-based synchronization protocol were assigned to receive one of two treatments to induce synchronized ovulation: 1 mg of EB im 24 h after progesterone (P4) device removal or 1 mg of EC im at P4 device removal. There was no difference (P > 0.05) between EB and EC treatments on follicular responses (maximum diameter of the ovulatory follicle, 13.1 vs. 13.9 mm; interval from progesterone device removal to ovulation, 70.2 vs. 68.5 h; and ovulation rate, 77.8 vs. 82.8%, respectively). In addition, P/AI was similar (P < 0.22) between the cows treated with EB (57.5%; 277/482) and EC (61.8%; 291/471). In conclusion, despite pharmacologic differences, both esters of estradiol administered either at P4 device removal (EC) or 24 h later (EB) were effective in inducing an LH surge which resulted in synchronized ovulations and similar P/AI in suckled Bos indicus beef cows submitted to TAI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.