Ultrasound has been widely used as a technological alternative way to analyse noninvasively an assortment of materials. It includes liquids with dissimilar physical characteristics, including mono-and multi-phasic mixtures, suspension formation and dissolution, in-line processing, among other practical applications. Regardless the huge spread of uses, so far ultrasound has not been proved to be able to quantify transesterification kinetics with a metrological approach. The aim of this chapter is to demonstrate that a properly designed ultrasonic experiment can be developed to identify remarkable stages of a transesterification reaction to produce biodiesel. The method was compared both with gas chromatography and hydrogen nuclear magnetic resonance ( 1 H NMR). For an in-line application, ultrasound has been proved to work properly as a monitoring tool for chemical reaction kinetics.
Ultrasonic techniques have been widely used in biodiesel production, since the acoustic cavitation is a phenomenon capable of accelerating potentially the transesterification reactions. The equipment employed in such approach was simply equipment available in any regular laboratory of chemistry. Further developments introduced the ultrasound as an important tool to produce biodiesel. The main advantage is increasing the conversion of esters at reduced reaction times, with significantly lower production costs. As a method for characterization and analysis of materials, ultrasound has been used since several decades ago. However, ultrasonic analytical methods based on metrological principles are fairly recent investigated. Using ultrasound as physical principle to interrogate biodiesel is a promising field of research, with some remarkable outcomes produced so far. The aim of this chapter is to demonstrate advances of using ultrasonic techniques in production and characterization of biodiesel, as well as an appraisal of the current technology status, and provide insights into future developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.