Bloqueios em redes de telefonia é um problema que consiste na recusa da conexão entre um aparelho telefônico e uma célula responsável pela emissão do sinal. A ocorrência de bloqueios é um indicador de que a célula está próxima de sofrer um congestionamento, o que pode gerar perdas financeiras para as empresas de telefonia. Neste trabalho, foram desenvolvidos dois sistemas de previsão usando redes neurais MLPs (Multi Layer Perceptron) e seguindo as estratégias conhecidas como Direta e DirRec. Para realizar o treinamento e teste das redes MLPs, foram utilizados dados reais contendo históricos de taxa de bloqueios em células de tecnologia 3G. As etapas do desenvolvimento consistiram na análise do desempenho das redes variando o número de neurônios nas camadas ocultas e o número de passos previstos. Os dois sistemas, Direto e DirRec, apresentaram desempenhos semelhantes, fazendo previsões de curto (15 minutos) e longo (5 horas) prazos com RMSE (Root Mean Squared Error) de aproximadamente 12% e 31%, respectivamente. Porém, o sistema que utilizou a estratégia DirRec se mostrou mais viável por demandar uma quantidade menor de redes MLPs e, desta maneira, ter um treinamento mais simples.
Blocking in mobile phone networks is a problem that consists of the refusal of the connection between a telephone device and a cell responsible for emitting the signal. The occurrence of blocking can indicate that a cell is close to congestion, leading to financial losses for telephone companies. This work developed three prediction systems using Multilayer Perceptron neural networks. Each system was modeled following different strategies: Direct, Recursive, and Direct Recursive, respectively. The training and test of the networks were carried out by using real data containing the history of blocking rates from a network of cells. The development stages consisted of analyzing the performance of each prediction system, varying the number of neurons in the hidden layers and the number of predicted steps from 1 (corresponding to 15 minutes ahead) to 20 (corresponding to 5 hours ahead). The system based on the Recursive strategy presented the lowest performance making predictions of short (15 minutes) and long (5 hours) terms with RMSE (Root Mean Squared Error) of approximately 13% and 40%, respectively, with a confidence interval between 27% and 29% considering all predictions. The systems based on the Direct and Direct Recursive strategies presented similar results, making predictions of short and long terms with RMSE of approximately 12% and 31%, respectively, with confidence intervals between 21% and 23% considering all predictions. Although the Direct and Direct Recursive systems obtained the lowest RMSE, the Direct Recursive is more advantageous as it requires fewer MLP networks. Consequently, it has simpler training and a lower computational cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.