We study the dynamics of an ensemble of non interacting particles constrained by two infinitely heavy walls, where one of them is moving periodically in time, while the other is fixed. The system presents mixed dynamics, where the accessible region for the particle to diffuse chaotically is bordered by an invariant spanning curve. Statistical analysis for the root mean square velocity, considering high and low velocity ensembles, leads the dynamics to the same steady state plateau for long times. A transport investigation of the dynamics via escape basins reveals that depending of the initial velocity ensemble, the decay rates of the survival probability present different shapes and bumps, in a mix of exponential, power law and stretched exponential decays. After an analysis of step-size averages, we found that the stable manifolds play the role of a preferential path for faster escape, being responsible for the bumps and different shapes of the survival probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.