We show that the scale of the inflationary potential may be the electroweak scale or even lower, while still generating an acceptable spectrum of primordial density perturbations. Thermal effects readily lead to the initial conditions necessary for low scale inflation to occur, and even the moduli problem can be evaded if there is such an inflationary period. We discuss how low scale inflationary models may arise in supersymmetric theories or in theories with large new space dimensions.Comment: 30 pages incl. 6 figures (RevTeX); Minor revisions and references adde
Abstract. Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations -derived from the model with a warped 5D geometry -are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalar field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.
We examine the relation between the dynamics of Lemaitre-Tolman-Bondi (LTB) dust models (with and without A) and the dynamics of dust perturbations in two of the more familiar formalisms used in cosmology: the metric based cosmological perturbation theory (CPT) and the covariant gauge invariant (GIC) perturbations. For this purpose we recast the evolution of LTB models in terms of a covariant and gauge invariant formalism of local and nonlocal "exact fluctuations" on a Friedmann-Lemaitre-Robertson-Walker (FLRW) background defined by suitable averages of covariant scalars. We examine the properties of these fluctuations, which can be defined for a confined comoving domain or for an asymptotic domain extending to whole time slices. In particular, the nonlocal density fluctuation provides a covariant and precise definition for the notion of the "density contrast." We show that in their linear regime these LTB exact fluctuations (local and nonlocal) are fully equivalent to the conventional cosmological perturbations in the synchronous-comoving gauge of CPT and to GIC perturbations. As an immediate consequence, we show the time-invariance of the spatial curvature perturbation in a simple form. The present work may provide important theoretical connections between the exact and perturbative (linear or nonlinear) approach to the dynamics of dust sources in general relativity.
We study tachyon inflation within the large-N formalism, which takes a prescription for the small Hubble flow slow-roll parameter ϵ1 as a function of the large number of e-folds N. This leads to a classification of models through their behaviour at large N. In addition to the perturbative N class, we introduce the polynomial and exponential classes for the ϵ1 parameter. With this formalism we reconstruct a large number of potentials used previously in the literature for tachyon inflation. We also obtain new families of potentials from the polynomial class. We characterize the realizations of tachyon inflation by computing the usual cosmological observables up to second order in the Hubble flow slow-roll parameters. This allows us to look at observable differences between tachyon and canonical single field inflation. The analysis of observables in light of the Planck 2015 data shows the viability of some of these models, mostly for certain realization of the polynomial and exponential classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.