Universities in Latin America commonly gather much more information about their students than allowed by data protection regulations in other parts of the world. We have tackled the question of whether abundant socio-economic data can be harnessed for the purpose of predicting academic outcomes and, thereby, taking proactive actions in student attention, course planning and resource management. A study was conducted to analyze the data gathered by a private university in Ecuador over more than 20 years, to normalize them and to parameterize a Multi-Layer Perceptron neural network, whose best-performing configuration would be used as a benchmark for the comparison of more recent and sophisticated Artificial Intelligence techniques. However, an extensive scan of hyperparameters for the perceptron—exploring more than 12,000 configurations—revealed no significant relationships between the input variables and the chosen metrics, suggesting that there is no gain from processing the extensive socio-economic data. This finding contradicts the expectations raised by previous works in the related literature and in some cases highlights important methodological flaws.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.