En este artículo se presentan tres números primos como altos potenciales para ser números de Mersenne y se sugiere su aplicación en testeos computacionales de primalidad. Estos números son construidos a partir de un algoritmo de regresión fundamentado en máquinas de vectores de apoyo (Support vector machine - SVM) y usando un Kernel Gaussiano. El entrenamiento de datos se lleva a cabo mediante el lenguaje de programación de Phyton, En el estudio se abordan los datos actuales de primos de Mersenne y se trabaja con el grupo de clasificación Ova-angular para primos de Mersenne.
In this paper three prime numbers are presented as high potentials to be Mersenne numbers and their application in computational primality testing is suggested. These numbers are constructed from a regression algorithm based on Support vector machines (SVM) and using a Gaussian Kernel. Data training is carried out using the Phyton programming language, In the study we address the current data of Mersenne primes and work with the Ova-angular classification group for Mersenne primes .
All generators of the optimal algebra associated with a generalization of the Endem-Fowler equation are showed; some of them allow to give invariant solutions. Variational symmetries and the respective conservation laws are also showed. Finally, a representation of Lie symmetry algebra is showed by groups of matrices.
It is known that the classification of the Lie algebras is a classical problem. Due to Levi’s Theorem the question can be reduced to the classification of semi-simple and solvable Lie algebras. This paper is devoted to classify the Lie algebra generated by the Lie symmetry group of the Chazy equation. We also present explicitly the one parame-ter subgroup related to the infinitesimal generators of the Chazy symmetry group. Moreover the classification of the Lie algebra associated to the optimal system is investigated.
La clasificación de las álgebras de Lie es un problema clásico. Acorde al teorema de Levi la cuestión puede reducirse a la clasificación de álgebras de Lie semi-simples y solubles. Este artículo está dedicado a clasificar el álgebra de Lie generada por el grupo de simetría de Lie para la ecuación de Chazy. También presentamos explícitamente los subgrupos a un parámetro relacionados con los generadores de las simetrías del grupo de Chazy. Además, la clasificación de la álgebra de Lie asociada al sistema optimo es investigada.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.