RNA interference (RNAi) is a powerful gene silencing technology, widely used in analyses of reverse genetics, development of therapeutic strategies and generation of biotechnological products. Here we present a free software tool for the rational design of RNAi effectors, named siRNA and shRNA designer (SSD). SSD incorporates our previously developed software Strand Analysis to construct template DNAs amenable for the large scale production of mono-, bi-and trivalent multimeric shRNAs, via in vitro rolling circle transcription. We tested SSD by creating a trivalent multimeric shRNA against the vitellogenin gene of Apis mellifera. RT-qPCR analysis revealed that our molecule promoted a decrease in more than 50% of the target mRNA, in a dose-dependent manner, when compared to the control group. Thus, SSD software allows the easy design of multimeric shRNAs, for single or multiple simultaneous knockdowns, which is especially interesting for studies involving large amounts of double-stranded molecules.
A técnica conhecida como “CRISPR” tem impactado de maneira singular o campo da Biologia Molecular por permitir a edição genética de várias espécies de forma simples, rápida e a baixo custo. Essa ferramenta foi desenvolvida a partir da descoberta do lócus CRISPR em procariontes, quase trinta anos atrás. Diversos estudos evidenciaram que este lócus age como um sistema imune adaptativo de bactérias e arqueias, reconhecendo e degradando o DNA de patógenos, além de armazenar estas informações em seus genomas, protegendo-os assim de eventuais reinfecções. A partir desse conhecimento foi possível desenvolver a tecnologia de edição genética “CRISPR”, composta pela endonuclease Caso, que funciona como uma tesoura molecular, e por um pequeno RNA guia que direciona os cortes dessa tesoura. A utilização dessa ferramenta tem permitido a inativação de genes (nocaute), inserção de elementos genéticos (knock-in), silenciamento gênico, mapeamento genômico, entre outras aplicações. CRISPR é um exemplo de conexão bem-sucedida entre ciência básica e aplicada, demonstrando que os esforços despendidos na compreensão de mecanismos moleculares presentes em espécies simples podem proporcionar enormes avanços na medicina e biotecnologia.
It is possible to gain a deeper insight into the role of water in biology by using physicochemical variant molecules, such as deuterium oxide (D2O); however, D2O is toxic to multicellular organisms in high concentrations. By using a unique desiccation‐rehydration process, we demonstrate that the anhydrobiotic nematode Panagrolaimus superbus is able to tolerate and proliferate in 99 % D2O. Moreover, we analysed P. superbus’ water‐channel protein (aquaporin; AQP), which is associated with dehydration/rehydration, by comparing its primary structure and modelling its tertiary structure in silico. Our data evidence that P. superbus’ AQP is an aquaglyceroporin, a class of water channel known to display a wider pore; this helps to explain the rapid and successful organismal influx of D2O into this species. This is the first demonstration of an animal able to withstand high D2O levels, thus paving a way for the investigation of the effects D2O on higher levels of biological organization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.