The common pipeline in autonomous driving systems is highly modular and includes a perception component which extracts lists of surrounding objects and passes these lists to a high-level decision component. In this case, leveraging the benefits of deep reinforcement learning for high-level decision making requires special architectures to deal with multiple variable-length sequences of different object types, such as vehicles, lanes or traffic signs. At the same time, the architecture has to be able to cover interactions between traffic participants in order to find the optimal action to be taken. In this work, we propose the novel Deep Scenes architecture, that can learn complex interaction-aware scene representations based on extensions of either 1) Deep Sets or 2) Graph Convolutional Networks. We present the Graph-Q and DeepScene-Q off-policy reinforcement learning algorithms, both outperforming state-ofthe-art methods in evaluations with the publicly available traffic simulator SUMO.
Background Deep neural networks learn from former experiences on a large scale and can be used to predict future disease activity as potential clinical decision support. AdaptiveNet is a novel adaptive recurrent neural network optimized to deal with heterogeneous and missing clinical data. Objective We investigate AdaptiveNet for the prediction of individual disease activity in patients from a rheumatoid arthritis (RA) registry. Methods Demographic and disease characteristics from over 9500 patients and 65.000 visits from the Swiss Quality Management (SCQM) database were used to train and evaluate the network. Patient characteristics, clinical and patient reported outcomes, laboratory values and medication were used as input features. DAS28-BSR served as a target to predict active RA and future numeric individual disease activity by classification and regression. Results AdaptiveNet predicted active disease defined as DAS28-BSR >2.6 at the next visit with an overall accuracy of 75.6% (SD +- 0.7%) and a sensitivity and specificity of 84.2% (SD +- 1.6%) and 61.5% (SD +- 3.6%), respectively. Prediction performance was significantly higher in patients with a disease duration >3 years and positive rheumatoid factor. Regression allowed forecasting individual DAS28-BSR values with a mean squared error (MSE) of 0.9 (SD +- 0.05). This corresponds to a 8% deviation between estimated and real DAS28-BSR values. Compared to linear regression, random forest and support vector machines, AdaptiveNet showed an increased performance of over 7% in MSE. Medication played a minor role in the prediction of RA disease activity. Conclusion AdaptiveNet has a superior capacity to predict numeric RA disease activity compared to classical machine learning architectures. All investigated models had limitations in low specificity.
Clinical data from electronic medical records, registries or trials provide a large source of information to apply machine learning methods in order to foster precision medicine, e.g. by finding new disease phenotypes or performing individual disease prediction. However, to take full advantage of deep learning methods on clinical data, architectures are necessary that 1) are robust with respect to missing and wrong values, and 2) can deal with highly variable-sized lists and long-term dependencies of individual diagnosis, procedures, measurements and medication prescriptions. In this work, we elaborate limitations of fully-connected neural networks and classical machine learning methods in this context and propose AdaptiveNet, a novel recurrent neural network architecture, which can deal with multiple lists of different events, alleviating the aforementioned limitations. We employ the architecture to the problem of disease progression prediction in rheumatoid arthritis using the Swiss Clinical Quality Management registry, which contains over 10.000 patients and more than 65.000 patient visits. Our proposed approach leads to more compact representations and outperforms the classical baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.