In this study, we investigated the influence of environmental variables (predictor variables) on the species richness, species diversity, functional diversity, and functional redundancy (response variables) of stream fish assemblages in an agroecosystem that harbor a gradient of degradation. We hypothesized that, despite presenting high richness or diversity in some occasions, fish communities will be more functionally redundant with stream degradation. Species richness, species diversity, and functional redundancy were predicted by the percentage of grass on the banks, which is a characteristic that indicates degraded conditions, whereas the percentage of coarse substrate in the stream bottom was an important predictor of all response variables and indicates more preserved conditions. Despite being more numerous and diverse, the groups of species living in streams with an abundance of grass on the banks perform similar functions in the ecosystem. We found that riparian and watershed land use had low predictive power in comparison to the instream habitat. If there is any interest in promoting ecosystem functions and fish diversity, conservation strategies should seek to restore forests in watersheds and riparian buffers, protect instream habitats from siltation, provide wood debris, and mitigate the proliferation of grass on stream banks. Such actions will work better if they are planned together with good farming practices because these basins will continue to be used for agriculture and livestock in the future.
This study aimed to describe the functional organization of the ichthyofauna of forest streams from northeastern Pará State, Brazil, based on behavioral observation of species' feeding tactics. Seven streams were sampled between June and November, 2010, during snorkeling sessions, totaling 91h 51min of visual censuses at day, dusk, and night periods. Seventy three species distributed in six orders, 26 families and 63 genera were observed, with dominance of Characiformes, followed by Siluriformes. From information gathered by ad libitum observations, each species was included in one of 18 functional trophic groups (FTGs), according to two main characteristics: (1) its most frequently observed feeding tactic; and (2) its spatial distribution in the stream environment, considering their horizontal (margins or main channel) and vertical (water column) dimensions. The most frequent FTGs observed were Nocturnal invertebrate pickers (9 species), Diurnal channel drift feeders (8 spp.), Diurnal surface pickers (7 spp.), and Ambush and stalking predators (6 spp.). The FTGs herein defined enable a comparative analysis of the structure and composition of ichthyofauna in different basins and environmental conditions, which presents an alternative approach to the use of taxonomic structure in ecological studies. The ichthyofauna classification based in FTGs proposed in this study is compared to three other classifications, proposed by Sazima (1986), Sabino & Zuanon (1998) and Casatti et al. (2001).
Protecting riparian vegetation around streams is vital in reducing the detrimental effects of environmental change on freshwater ecosystems and in maintaining aquatic biodiversity. Thus, identifying ecological thresholds is useful for defining regulatory limits and for guiding the management of riparian zones towards the conservation of freshwater biota. Using nationwide data on fish and invertebrates occurring in small Brazilian streams, we estimated thresholds of native vegetation loss in which there are abrupt changes in the occurrence and abundance of freshwater bioindicators and tested whether there are congruent responses among different biomes, biological groups and riparian buffer sizes. Mean thresholds of native vegetation cover loss varied widely among biomes, buffer sizes and biological groups: ranging from 0.5% to 77.4% for fish, from 2.9% to 37.0% for aquatic invertebrates and from 3.8% to 43.2% for a subset of aquatic invertebrates. Confidence intervals for thresholds were wide, but the minimum values of these intervals were lower for the smaller riparian buffers (50 and 100 m) than larger ones (200 and 500 m), indicating that land use should be kept away from the streams. Also, thresholds occurred at a lower percentage of riparian vegetation loss in the smaller buffers, and were critically lower for invertebrates: reducing only 6.5% of native vegetation cover within a 50‐m riparian buffer is enough to cross thresholds for invertebrates. Synthesis and applications. The high variability in biodiversity responses to loss of native riparian vegetation suggests caution in the use of a single riparian width for conservation actions or policy definitions nationwide. The most sensitive bioindicators can be used as early warning signals of abrupt changes in freshwater biodiversity. In practice, maintaining at least 50‐m wide riparian reserves on each side of streams would be more effective to protect freshwater biodiversity in Brazil. However, incentives and conservation strategies to protect even wider riparian reserves (~100 m) and also taking into consideration the regional context will promote a greater benefit. This information should be used to set conservation goals and to create complementary mechanisms and policies to protect wider riparian reserves than those currently required by the federal law.
Deforestation is a primary driver of biodiversity change through habitat loss and fragmentation. Stream biodiversity may not respond to deforestation in a simple linear relationship. Rather, threshold responses to extent and timing of deforestation may occur. Identification of critical deforestation thresholds is needed for effective conservation and management. We tested for threshold responses of fish species and functional groups to degree of watershed and riparian zone deforestation and time since impact in 75 streams in the western Brazilian Amazon. We used remote sensing to assess deforestation from 1984 to 2011. Fish assemblages were sampled with seines and dip nets in a standardized manner. Fish species (n = 84) were classified into 20 functional groups based on ecomorphological traits associated with habitat use, feeding, and locomotion. Threshold responses were quantified using threshold indicator taxa analysis. Negative threshold responses to deforestation were common and consistently occurred at very low levels of deforestation (<20%) and soon after impact (<10 years). Sensitive species were functionally unique and associated with complex habitats and structures of allochthonous origin found in forested watersheds. Positive threshold responses of species were less common and generally occurred at >70% deforestation and >10 years after impact. Findings were similar at the community level for both taxonomic and functional analyses. Because most negative threshold responses occurred at low levels of deforestation and soon after impact, even minimal change is expected to negatively affect biodiversity. Delayed positive threshold responses to extreme deforestation by a few species do not offset the loss of sensitive taxa and likely contribute to biotic homogenization.
Habitat loss is the greatest threat to the persistence of forest-dependent amphibians, but it is not the only factor influencing species occurrences. The composition of the surrounding matrix, structure of stream networks, and topography are also important landscape characteristics influencing amphibian distributions. Tropical forests have high diversity and endemism of amphibians, but little is known about the specific responses of many of these species to landscape features. In this paper, we quantify the response of amphibian species and communities to landscape-scale characteristics in streams within the fragmented Brazilian Atlantic Forest. We surveyed amphibian communities during a rainy season in 50 independent stream segments using Standardized Acoustic and Visual Transect Sampling (active) and Automated Acoustic Recorders (passive) methods. We developed a hierarchical multi-species occupancy model to quantify the influence of landscape-scale characteristics (forest cover, agriculture, catchment area, stream density, and slope) on amphibian occurrence probabilities while accounting for imperfect detection of species using the two survey methods. At the community level, we estimated an overall mean positive relationship between amphibian occurrence probabilities and forest cover, and a negative relationship with agriculture. Catchment area and slope were negatively related with amphibian community structure (95% credible interval [CI] did not overlap zero). The species-level relationships with landscape covariates were highly variable but showed similar patterns to those at the community level. Species detection probabilities varied widely and were influenced by the sampling method. For most species, the active method resulted in higher detection probabilities than the passive approach. Our findings suggest that small streams and flat topography lead to higher amphibian occurrence probabilities for many species in Brazil's Atlantic Forest. Our results combined with land use and topographic maps can be used to make predictions of amphibian occurrences and distributions beyond our study area. Such projections can be useful to determine where to conduct future research and prioritize conservation efforts in human-modified landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.