The design of Siwa 1 , a compact low power custom system on chip (SoC), targeted for implantable/wearable applications, is reported in this paper. Siwa is based on a RISC-V RV32I architecture. It has a centrally controlled non-pipelined structure, and it includes a control interface for an integrated sensing and stimulation device for biological tissues as well as standard communication interfaces. Siwa was developed from scratch using System Verilog, and implemented in a 180nm CMOS technology; Siwa includes a latch based register file c apable to read and write in one clock cycle with an area 30% smaller and a power consumption 25% lower with respect to an equivalent flip flop implementation; also, it has an estimated average power consumption of 70μW (48pJ/cycle) which is comparable to other micro-controllers commonly used in IMD applications.
The development of electronic implantable medical devices (IMD) has been increasing over the years, targeting very diverse applications and implementing different technologies. The impact of IMDs in the treatment of different ailments like Parkinson’s disease, hearing impairment, heart arrhythmia, and chronic pain, among many others, has been notorious and inspired their exploration to treat other health problems. Even when there is great interest in the scientific community for the exploration and development of IMDs, no standards are ruling its development. This lack of standardization is the reason why the analysis of the tendencies of this area from the technical point of view becomes complex. The analysis of the tendencies in the development of IMD devices required the exploration of diverse sources, which describe heterogeneous systems using very different approaches and methodologies for similar problems. In this paper an open SQL database intended for collecting information from IMD publications is presented; at this point, more than 200 published works are feed in the database covering a period from 1974 to 2018. This database is extensible and enables researchers to find trends and explore the development of IMDs from a broader perspective. We also used this database as a proof of concept to explore some general trends in the design of IMDs based on the included works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.