The aim of the study was to investigate the effects of acute supplementation of sodium bicarbonate (NaHCO3) on maximal accumulated oxygen deficit (MAOD) determined by a single supramaximal effort (MAODALT) in running and the correlation with 200- and 400-m running performances. Fifteen healthy men (age, 23 ± 4 years; maximal oxygen uptake, 50.6 ± 6.1 mL·kg(-1)·min(-1)) underwent a maximal incremental exercise test and 2 supramaximal efforts at 110% of the intensity associated with maximal oxygen uptake, which was carried out after ingesting either 0.3 g·kg(-1) body weight NaHCO3 or a placebo (dextrose) and completing 200- and 400-m performance tests. The study design was double-blind, crossover, and placebo-controlled. Significant differences were found between the NaHCO3 and placebo conditions for MAODALT (p = 0.01) and the qualitative inference for substantial changes showed a very likely positive effect (98%). The lactic anaerobic contribution in the NaHCO3 ingestion condition was significantly higher (p < 0.01) and showed a very likely positive effect (99% chance), similar to that verified for peak blood lactate concentration (p < 0.01). No difference was found for time until exhaustion (p = 0.19) or alactic anaerobic contribution (p = 0.81). No significant correlations were observed between MAODALT and 200- and 400-m running performance tests. Therefore, we can conclude that both MAODALT and the anaerobic lactic metabolism are modified after acute NaHCO3 ingestion, but it is not correlated with running performance.
To verify the acute effect of drop jumps (DJ) on two repeated sprint ability tests (RSA), interspersed with a rest period simulating a basketball game break. Twelve first division basketball players (age: 24.8 ± 6.9 years; body mass: 97.0 ± 9.2 kg; height: 2.0 ± 0.1 m) performed, in a randomized crossover design, two RSA tests separated by 5 min after DJ or control conditions. The DJ condition comprised 5 DJs performed 4 min prior to the first RSA test, whereas 3 DJ were completed 30 s prior to a second RSA test. Surface electromyography was recorded from the lower body for root mean square (RMS) analyses during sprinting. Three countermovement jump (CMJ) tests were performed after warming up and immediately after the second RSA test. DJ improved RSA performance with a faster best time in the first RSA test (p = 0.035), and a shorter total time and mean time (p = 0.030) for the second RSA test. No significant differences were found in RMS between protocols. CMJdecreased in both conditions after the RSA tests (p < 0.05). This study revealed a post-DJ RSA potentiation in professional male basketball players. This simple and effective approach could be implemented at the end of the warm-up and before the end of game breaks to improve player preparedness to compete.
The purpose of this study was to investigate the acute effects of photobiomodulation therapy using cluster light-emitting diodes (LEDT; 104 diodes) (wavelength 660 and 850 nm; energy density 1.5 and 4.5 J/cm(2); energy 60 J at each point; total energy delivered 600 J) on alternative maximal accumulated oxygen deficit (MAODALT) and time to exhaustion, during a high-intensity running effort. Fifteen moderately active and healthy males (age 25.1 ± 4.4 years) underwent a graded exercise test and two supramaximal exhaustive efforts at 115 % of the intensity associated with maximal oxygen uptake performed after acute LEDT or placebo irradiation in a double-blind, crossover, and placebo-controlled study design. The MAODALT was assumed as the sum of both oxygen equivalents estimated from the glycolytic and phosphagen metabolism pathways during each supramaximal effort. For the statistical analysis, a paired t test was used to determine differences between the treatments. The significance level was assumed as 95 %. In addition, a qualitative analysis was used to determine the magnitude of differences between groups. No significant differences were found for the values of oxygen equivalents from each energetic metabolism (P ≥ 0.28), for MAODALT values between the LEDT and placebo conditions (P ≥ 0.27), or for time to exhaustion (P = 0.80), except for the respiratory exchange ratio (P = 0.01). The magnitude-based inference of effect size reported only a possibly negative effect of photobiomodulation on MAODALT when expressed in units relative to body mass and on the glycolysis pathway (26 %). In summary, LEDT after a high-intensity running effort did not alter the MAODALT, metabolic energy pathways, or high-intensity running performance.
Brisola, GMP and Zagatto, AM. Ergogenic effects of β-alanine supplementation on different sports modalities: strong evidence or only incipient findings? J Strength Cond Res 33(1): 253–282, 2019—β-Alanine supplementation is a popular nutritional ergogenic aid among the sports community. Due to its efficacy, already proven in the literature, to increase the intramuscular carnosine content (β-alanyl-L-histidine), whose main function is intramuscular buffering, β-alanine supplementation has become a nutritional strategy to improve performance, mainly in high-intensity efforts. However, although many studies present evidence of the efficacy of β-alanine supplementation in high-intensity efforts, discrepancies in outcomes are still present and the performance enhancing effects seem to be related to the specificities of each sport discipline, making it difficult for athletes/coaches to interpret the efficacy of β-alanine supplementation. Thus, this study carried out a review of the literature on this topic and summarized, analyzed, and critically discussed the findings with the objective of clarifying the current evidence found in the literature on different types of efforts and sport modalities. The present review revealed that inconsistencies are still found in aerobic parameters determined in incremental tests, except for physical working capacity at the neuromuscular fatigue threshold. Inconsistencies are also found for strength exercises and intermittent high-intensity efforts, whereas in supramaximal continuous mode intermittent exercise, the beneficial evidence is strong. In sports modalities, the evidence should be analyzed separately for each sporting modality. Thus, sports modalities that have strong evidence of the ergogenic effects of β-alanine supplementation are: cycling race of 4 km, rowing race of 2,000 m, swimming race of 100 and 200 m, combat modalities, and water polo. Finally, there is some evidence of slight additional effects on physical performance from cosupplementation with sodium bicarbonate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.