The aim of this study was to obtain membranes with antimicrobial activity presenting a complex sandwich-type structure. The outer layers are comprised of poly(methyl methacrylate) membranes, whereas the inner active layer consists of a modified commercial membrane to achieve antimicrobial properties. This activity arises due to the presence of silver nanoparticles in a material with a hybrid composition deposited on a commercial membrane. This hybrid material consists of polymer colloids and multiwall carbon nanotubes used for both the stabilization of the active layer by the interconnections of the polymer particles and as active component. The filtration tests revealed a good stability of the materials and an increased hydrophilicity of the hybrid membranes. The antimicrobial properties have been evaluated using Staphylococcus aureus and Escherichia coli, and have been correlated with the content and migration rate of silver ions.
Taking into consideration the circular economy context, from cereal production and processing result by-products and residues which can be transformed into the new raw materials. Straw, husks, brans, flours, bread waste, confectionary waste, so on, can be re-used using different processes such as: extraction, fermentation, microorganism cultivation, for obtaining added value products. These new products obtained can be: biofuels, enzymes, biodegradable material food contact, single cell protein, bio-adsorbent, nanoparticles, bio alcohol, bioactive compounds like fibres, phytochemicals, minerals, so on. This paper is a short review regarding sharing knowledge and good practices in implementing circular economy within food systems, specifically, cereal supply chain.
PLA-based composites containing CF in the range 0 to 10 wt. % were prepared by melt mixing technique. The prepared composites were investigated in terms of processability, chemical structure (by Attenuated total reflectance - Fourier Transform Infrared - ATR-FT-IR analysis), thermal (Differential Scanning Calorimetry - DSC), optical properties (using UV-Vis spectrometry), barrier and migration in distilled water. Also, the behaviour of PLA based composites at sterilization was performed by examination the changes in their chemical structure. This study shows the feasibility of improving of PLA properties by using cellulose fibres, designed for flexible food packaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.