Abstract. The Emissions Database for Global Atmospheric Research (EDGAR) compiles anthropogenic emissions data for greenhouse gases (GHGs), and for multiple air pollutants, based on international statistics and emission factors. EDGAR data provide quantitative support for atmospheric modelling and for mitigation scenario and impact assessment analyses as well as for policy evaluation. The new version (v4.3.2) of the EDGAR emission inventory provides global estimates, broken down to IPCC-relevant source-sector levels, from 1970 (the year of the European Union's first Air Quality Directive) to 2012 (the end year of the first commitment period of the Kyoto Protocol, KP). Strengths of EDGAR v4.3.2 include global geo-coverage (226 countries), continuity in time, and comprehensiveness in activities. Emissions of multiple chemical compounds, GHGs as well as air pollutants, from relevant sources (fossil fuel activities but also, for example, fermentation processes in agricultural activities) are compiled following a bottom-up (BU), transparent and IPCC-compliant methodology. This paper describes EDGAR v4.3.2 developments with respect to three major long-lived GHGs (CO2, CH4, and N2O) derived from a wide range of human activities apart from the land-use, land-use change and forestry (LULUCF) sector and apart from savannah burning; a companion paper quantifies and discusses emissions of air pollutants. Detailed information is included for each of the IPCC-relevant source sectors, leading to global totals for 2010 (in the middle of the first KP commitment period) (with a 95 % confidence interval in parentheses): 33.6(±5.9) Pg CO2 yr−1, 0.34(±0.16) Pg CH4 yr−1, and 7.2(±3.7) Tg N2O yr−1. We provide uncertainty factors in emissions data for the different GHGs and for three different groups of countries: OECD countries of 1990, countries with economies in transition in 1990, and the remaining countries in development (the UNFCCC non-Annex I parties). We document trends for the major emitting countries together with the European Union in more detail, demonstrating that effects of fuel markets and financial instability have had greater impacts on GHG trends than effects of income or population. These data (https://doi.org/10.5281/zenodo.2658138, Janssens-Maenhout et al., 2019) are visualised with annual and monthly global emissions grid maps of 0.1∘×0.1∘ for each source sector.
Abstract. The Emissions Database for Global Atmospheric Research (EDGAR) compiles anthropogenic emissions data for greenhouse gases (GHG) and for multiple air pollutants based on international statistics and emission factors. EDGAR data provides quantitative support for atmospheric modelling and for mitigation scenario and impact assessment analyses as well as for policy evaluation. The new version v4.3.2 of the EDGAR emission inventory provides global estimates, disaggregated to IPCC-relevant source-sector levels, from 1970 (the year of EU's first Air Quality Directive) to 2012 (the end year of the first commitment period of the Kyoto Protocol (KP)). Strengths of EDGAR v4.3.2 include global geo-coverage (226 countries), continuity in time, and comprehensiveness in activities. Emissions of multiple chemical compounds, GHG as well as air pollutants, from relevant sources (fossil fuel activities but also, for example fermentation processes in agricultural activities) are compiled following a bottom-up (BU), fully-traceable and IPCC-based methodology. This paper describes EDGARv4.3.2 developments with respect to three major GHG (CO2, CH4, and N2O) derived from a wide range of human activities apart from the land-use, land-use change and forestry (LULUCF) sector and apart from Savannah burning; a companion paper quantifies and discusses emissions of air pollutants. Detailed information is included for each of the IPCC-relevant source-sectors, leading to global totals for 2010 (in the middle of the first KP commitment period) (with 95 % confidence interval in parentheses): 33.6 (±5.9) Pg CO2/yr, 0.34 (±0.16) Pg CH4/yr, and 7.2 (±3.7) Tg N2O/yr. We provide uncertainty factors in emissions data for the different GHGs and for three different groups of countries: OECD countries of 1990, countries with economies in transition in 1990, and the remaining countries in development (the UNFCCC non-Annex I parties). We document trends for the major emitting countries together with the European Union in more detail, demonstrating that effects of fuel markets and financial stability have had greater impacts on GHG trends than effects of income or population. These data (DOI: https://doi.org/10.2904/JRC_DATASET_EDGAR) are visualised with annual and monthly global emissions grid-maps of 0.1° ×0.1° for each source-sector; these data can be freely accessed from the EDGAR website http://edgar.jrc.ec.europa.eu/overview.php?v=432&SECURE=123.
Recently, the European Commission has adopted a Circular Economy package. In addition, climate change is regarded as a major global challenge, and the de-carbonization of the energy sector requires a massive transformation that involves an increase of renewable shares in the energy mix and the incorporation of carbon capture and storage (CCS) processes. Given all this strong new momentum, what will the Norwegian waste-to-energy (WtE) look like in a decade? What threats and opportunities are foreseen? In an attempt to answer these questions, this study combines process-based life-cycle assessment with analysis of the overall energy and material balances, mathematical optimization and cost assessment in four scenarios: (1) the current situation of the Norwegian WtE sector, (2) the implications of the circular economy, (3) the addition of CCS on the current WtE system and (4) a landfill scenario. Except for climate change, the CCS scenario performs worse than the WtE scenario. The energy recovering scenarios perform better than the recycling scenario for (1) freshwater eutrophication and human toxicity potentials due to secondary waste streams and (2) ozone depletion potential due to the additional fossil fuel used in the recycling processes. The inclusion of the near-term climate forcers decreases the climate change impacts by 1% to 13% due to a net cooling mainly induced by NOx. Circular economy may actually give the WtE system the opportunity to strengthen and expand its role towards new or little developed value chains such as secondary raw materials production and valorization of new waste streams occurring in material recycling. Keywords 1. Waste-to-Energy (WtE) 2. Life-cycle assessment (LCA) 3. Carbon capture and storage (CCS) 4. Circular economy 5. Climate change 6. Near-term climate forcers
Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 + UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990–2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4 yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH–HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1, respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1, respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU+UK scale and at the national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4590875 (Petrescu et al., 2020b).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.