Forage dry matter is the main source of nutrients in the diet of ruminant animals. Thus, this trait is evaluated in most forage breeding programs with the objective of increasing the yield. Novel solutions combining unmanned aerial vehicles (UAVs) and computer vision are crucial to increase the efficiency of forage breeding programs, to support high-throughput phenotyping (HTP), aiming to estimate parameters correlated to important traits. The main goal of this study was to propose a convolutional neural network (CNN) approach using UAV-RGB imagery to estimate dry matter yield traits in a guineagrass breeding program. For this, an experiment composed of 330 plots of full-sib families and checks conducted at Embrapa Beef Cattle, Brazil, was used. The image dataset was composed of images obtained with an RGB sensor embedded in a Phantom 4 PRO. The traits leaf dry matter yield (LDMY) and total dry matter yield (TDMY) were obtained by conventional agronomic methodology and considered as the ground-truth data. Different CNN architectures were analyzed, such as AlexNet, ResNeXt50, DarkNet53, and two networks proposed recently for related tasks named MaCNN and LF-CNN. Pretrained AlexNet and ResNeXt50 architectures were also studied. Ten-fold cross-validation was used for training and testing the model. Estimates of DMY traits by each CNN architecture were considered as new HTP traits to compare with real traits. Pearson correlation coefficient r between real and HTP traits ranged from 0.62 to 0.79 for LDMY and from 0.60 to 0.76 for TDMY; root square mean error (RSME) ranged from 286.24 to 366.93 kg·ha−1 for LDMY and from 413.07 to 506.56 kg·ha−1 for TDMY. All the CNNs generated heritable HTP traits, except LF-CNN for LDMY and AlexNet for TDMY. Genetic correlations between real and HTP traits were high but varied according to the CNN architecture. HTP trait from ResNeXt50 pretrained achieved the best results for indirect selection regardless of the dry matter trait. This demonstrates that CNNs with remote sensing data are highly promising for HTP for dry matter yield traits in forage breeding programs.
Objetivo: Objetiva-se descrever a elaboração e validação de um bundle para prevenção de infecção de corrente sanguínea associada a cateter venoso central em pacientes com germes multirresistentes. Método: Estudo de validação por consenso entre especialistas, concebido em um hospital universitário. A amostra foi composta por 10 enfermeiros do setor e três da Comissão de Controle de Infecção da instituição, um acadêmico de enfermagem e um professor de uma universidade federal. Foi desenvolvido de janeiro a março de 2019. As informações foram coletadas por meio de registro sistemático das reuniões. Resultados: Elaborou-se um bundle para prevenção de infecção de corrente sanguínea associada ao cateter venoso central estabelecendo atividades específicas para cada membro da equipe. Instituiu-se a figura do especialista, profissional altamente qualificado e com carga horária específica para o cuidado aos cateteres. Conclusão: No Brasil, poucas são as instituições que possuem características semelhantes para cuidados de pacientes portadores de GMR. A utilização de um protocolo deve qualificar o atendimento a estes pacientes, aprimorando a segurança no cuidado e reduzindo a morbimortalidade por infecção nosocomial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.