Neurodegenerative disorders are a major public health problem because of the high frequency of these diseases. Genome editing with the CRISPR/Cas9 system is making it possible to modify the sequence of genes linked to these disorders. We designed the KamiCas9 self-inactivating editing system to achieve transient expression of the Cas9 protein and high editing efficiency. In the first application, the gene responsible for Huntington's disease (HD) was targeted in adult mouse neuronal and glial cells. Mutant huntingtin (HTT) was efficiently inactivated in mouse models of HD, leading to an improvement in key markers of the disease. Sequencing of potential off-targets with the constitutive Cas9 system in differentiated human iPSC revealed a very low incidence with only one site above background level. This off-target frequency was significantly reduced with the KamiCas9 system. These results demonstrate the potential of the self-inactivating CRISPR/Cas9 editing for applications in the context of neurodegenerative diseases.
Adeno-associated virus (AAV) vectors are currently among the most commonly applied for in vivo gene therapy approaches. The evaluation of vectors during clinical development requires the production of considerable amounts of highly pure and potent vectors. Here, we set up a scalable process for AAV production, using orbitally shaken bioreactors and a fully characterized suspension-adapted cell line, HEKExpress. We conducted a proof-of-concept production of AAV2/8 and AAV2/9 vectors using HEKExpress cells. Furthermore, we compared the production of AAV2/9 vectors using this suspension cell line to classical protocols based on adherent HEK293 cells to demonstrate bioequivalence in vitro and in vivo. Following upstream processing, we purified vectors via gradient centrifugation and immunoaffinity chromatography. The in vitro characterization revealed differences due to the purification method, as well as the transfection protocol and the corresponding HEK293 cell line. The purification method and cell line used also affected in vivo transduction efficiency after bilateral injection of AAV2/9 vectors expressing a GFP reporter fused with a nuclear localization signal (AAV2/9-CBA-nlsGFP) into the striatum of adult mice. These results show that AAV vectors deriving from suspension HEKExpress cells are bioequivalent and may exhibit higher potency than vectors produced with adherent HEK293 cells.
Gene therapy is currently an irreversible approach, without possibilities to fine-tune or halt the expression of a therapeutic gene product. Especially when expressing neurotrophic factors to treat neurodegenerative disorders, options to regulate transgene expression levels might be beneficial. We thus developed an advanced single-genome inducible AAV vector for expression of GDNF, under control of the approved small molecule drug mifepristone. In the rat brain, GDNF expression can be induced over a wide range up to three hundred-fold over endogenous background, and completely returns to baseline within 3-4 weeks. When applied with appropriate serotype and titre, the vector is absolutely free of any non-induced background expression. In the BACHD model of Huntington's disease we demonstrate that the vector can be kept in a continuous ON-state for extended periods of time. In a model of Parkinson's disease we demonstrate that repeated short-term expression of GDNF restores motor capabilities in 6-OHDA-lesioned rats. We also report on sex-dependent pharmacodynamics of mifepristone in the rodent brain. Taken together, we show that wide-range and high-level induction, background-free, fully reversible and therapeutically active GDNF expression can be achieved under tight pharmacological control by this novel AAV - "Gene Switch" vector.
This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for genome editing in the context of Huntington's disease. Here, we provide protocols that cover the design of various genome editing strategies, the cloning of CRISPR/Cas9 elements into lentiviral vectors, and the assessment of cleavage efficiency, as well as potential unwanted effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.