Huntington's disease (HD) is an inherited neurodegenerative disease characterized by motor, cognitive and psychiatric symptoms. Atrophy of the striatum has been proposed for several years as a biomarker to assess disease progression in HD gene carriers. However, it does not provide any information about the biological mechanisms linked to HD pathogenesis. Changes in brain metabolites have been also consistently seen in HD patients and animal models using Magnetic Resonance Spectroscopy (MRS), but metabolite measurements are generally limited to a single voxel. In this study, we used Chemical Exchange Saturation Transfer imaging of glutamate (gluCEST) in order to map glutamate distribution in the brain of a knock-in mouse model (Ki140CAG) with a precise anatomical resolution. We demonstrated that both heterozygous and homozygous mice with pathological CAG repeat expansion in gene encoding huntingtin exhibited an atrophy of the striatum and a significant alteration of their metabolic profile in the striatum as compared to wild type littermate controls. The striatal decrease was then confirmed by gluCEST imaging. Surprisingly, CEST imaging also revealed that the corpus callosum was the most affected structure in both genotype groups, suggesting that this structure could be highly vulnerable in HD. We evaluated for the first time gluCEST imaging as a potential biomarker of HD and demonstrated its potential for characterizing metabolic defects in neurodegenerative diseases in specific regions.
Neurodegenerative disorders are a major public health problem because of the high frequency of these diseases. Genome editing with the CRISPR/Cas9 system is making it possible to modify the sequence of genes linked to these disorders. We designed the KamiCas9 self-inactivating editing system to achieve transient expression of the Cas9 protein and high editing efficiency. In the first application, the gene responsible for Huntington's disease (HD) was targeted in adult mouse neuronal and glial cells. Mutant huntingtin (HTT) was efficiently inactivated in mouse models of HD, leading to an improvement in key markers of the disease. Sequencing of potential off-targets with the constitutive Cas9 system in differentiated human iPSC revealed a very low incidence with only one site above background level. This off-target frequency was significantly reduced with the KamiCas9 system. These results demonstrate the potential of the self-inactivating CRISPR/Cas9 editing for applications in the context of neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.