The way of thinking on Big Data, Open Data and their use by organizations or individuals has been a trending topic over the last few years. Big Data deals with collecting, storing, analyzing and putting data in value. Big, medium and small enterprises want to include information technologies in their management and decision processes. At the same time, movements about rights on public data have increased their presence and force. Data from governments must be open. Every day, more and more cities and countries are opening their data. Open Data has emerged as a new paradigm for the public service provision model with a special role in Smart City. The main goal of Big and Open Data in a Smart City is to develop systems which can be useful for citizens. In this work we analyze how both private enterprises and governments manage to improve their data value by combining private and public datasets and we give some examples of our work in this area.
In this work, we applied a stochastic simulation methodology to quantify the power of the detection of outlying mixture components of a stochastic model, when applying a reduced-dimension clustering technique such as Self-Organizing Maps (SOMs). The essential feature of SOMs, besides dimensional reduction into a discrete map, is the conservation of topology. In SOMs, two forms of learning are applied: competitive, by sequential allocation of sample observations to a winning node in the map, and cooperative, by the update of the weights of the winning node and its neighbors. By means of cooperative learning, the conservation of topology from the original data space to the reduced (typically 2D) map is achieved. Here, we compared the performance of one- and two-layer SOMs in the outlier representation task. The same stratified sampling was applied for both the one-layer and two-layer SOMs; although, stratification would only be relevant for the two-layer setting—to estimate the outlying mixture component detection power. Two distance measures between points in the map were defined to quantify the conservation of topology. The results of the experiment showed that the two-layer setting was more efficient in outlier detection while maintaining the basic properties of the SOM, which included adequately representing distances from the outlier component to the remaining ones.
We developed two models for real-time monitoring and forecasting of the evolution of the COVID-19 pandemic: a non-linear regression model and an error correction model. Our strategy allows us to detect pandemic peaks and make short- and long-term forecasts of the number of infected, deaths and people requiring hospitalization and intensive care. The non-linear regression model is implemented in an expert system that automatically allows the user to fit and forecast through a graphical interface. This system is equipped with a control procedure to detect trend changes and define the end of one wave and the beginning of another. Moreover, it depends on only four parameters per series that are easy to interpret and monitor along time for each variable. This feature enables us to study the effect of interventions over time in order to advise how to proceed in future outbreaks. The error correction model developed works with cointegration between series and has a great forecast capacity. Our system is prepared to work in parallel in all the Autonomous Communities of Spain. Moreover, our models are compared with a SIR model extension (SCIR) and several models of artificial intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.