It is a challenge to estimate expected benefits from recommender systems based on association rule mining. This paper aims to address this challenge and presents a study of buying preferences of a sample of retail customers. It reveals a monotonic, non-linear relationship between the expected profits (as a function of information loss) and minimum support threshold levels, when considering transactions for a recommender system based on association rules. This finding is significant for recommender systems that utilize potential profits as a decisionmaking criterion.
I hereby certify that the work embodied in this thesis is the result of original research, is free of plagiarised materials, and has not been submitted for a higher degree to any other university or institution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.