Effect of nitric oxide (NO) in mitigating stress induced by arsenic (As) was assessed in Pistia stratiotes, with NO supplied as sodium nitroprusside (SNP). Plants were exposed to four treatments: control, SNP (0.1 mg L(-1)), As (1.5 mg L(-1)), As + SNP (1.5 and 0.1 mg L(-1)), for seven days (analyses of growth, absorption of As and mineral nutrients) and for 24 h (analyses of concentration of reactive oxygen intermediates (ROIs), antioxidant capacity and photosynthesis). P. stratiotes accumulated high concentrations of As and this accumulation wasn't affected by the addition of SNP, but the tolerance index of the plant to As increased. SNP attenuated effects of As on the absorption of mineral nutrients (Ca, Fe, Mn, and Mg), but not for phosphorus, and maintained concentrations of ROIs to normal levels, probably due to the increase in antioxidant capacity. The As damaged the photosynthesis by the decrease in pigment contents and by disturbance the photochemical (loss of PSII efficiency and increases in non-photochemical quenching coefficient) and biochemical (reductions in carbon assimilation, increase in the C(i)/C(a) and phi(PSII)/phi(CO2) ratios) steps. The addition of SNP restored these parameters to normal levels. Thus, NO was able to increasing the resistance of P. stratiotes to As.
Phytoremediation has proven to be an effi cient technology for removing arsenic (As) from water, but the plants used in this process need to be tolerant to the damage caused by As. Th e toxic eff ect of As on growth and functioning of the antioxidant system was studied in individual plants of Azolla caroliniana exposed to fi ve concentrations of As (0.0, 0.25, 0.5, 1.0 and 1.5 mg L -1 ) for the course of fi ve days. Growth, As absorption, enzymatic activity, total and non-protein thiols and anthocyanin content were assessed. Azolla caroliniana was able to take up large amounts of the pollutant, reaching As concentrations of 386.1 µg g -1 dry weight without saturating the absorption mechanism. Th e tolerance index and the growth of A. caroliniana decreased with the increased As uptake. Superoxide dismutase, peroxidases, catalases and glutathione reductase activities increased at lower doses of As and subsequently declined with higher concentrations, whereas ascorbate peroxidase activity was reduced in all treatments. Unlike the enzymatic defence system, anthocyanin and thiol content increased consistently in all treatments and showed a positive correlation with As concentration. Th erefore, the increased synthesis of non-enzymatic antioxidants is most likely the main factor responsible for the high As tolerance of A. caroliniana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.