This study aimed to evaluate the effect of seminal plasma on bovine sperm cryopreservation and to assess the integrity of plasma and acrosomal membranes, mitochondrial potential, remodelling of F-actin cytoskeleton and sperm chromatin fragmentation during the cooling, equilibrium and freezing/thawing stages. Six ejaculates collected from seven Nelore bulls (n = 42) were used in this study. Each ejaculate was divided into two aliquots (with seminal plasma = SP group; without seminal plasma = NSP group) and packed to a final concentration of 50 × 10 6 sperm per straw. Statistical analyses were performed using SAS software (version 9.3), and p ≤ .05 was considered significant. A time effect was observed for all sperm characteristics (p < .05), except for chromatin fragmentation (p > .05). The presence of seminal plasma better preserved the acrosomal integrity (SP = 75.2% and NSP = 71.7%; p < .05) and also provided lower F-actin remodelling during cryopreservation process (SP = 29.9% and NSP = 32.4%; p < .05). Regarding to the cryopreservation stages, it was observed that cooling step induced higher remodelling of F-actin than the equilibrium and freezing/thawing stages (56.3%, 32.2% and 23.9%, respectively; p < .05). The equilibrium step had minor influence on overall sperm characteristics while the freezing/thawing stage was responsible for the highest percentage of damage in plasma membrane (−65.2%), acrosomal membrane (−34.0%) and mitochondrial potential (−48.1%). On the other hand, none of the cryopreservation stages affected chromatin integrity. It was concluded that the presence of seminal plasma provides increased acrosomal integrity and reduced remodelling of F-actin cytoskeleton. Higher F-actin remodelling is observed after the cooling step while the freezing/thawing step is most damaging to sperm membranes and mitochondrial potential during bovine sperm cryopreservation.
Coenzyme Q-10 (CoQ-10) is a cofactor for mitochondrial electron transport chain and may be an alternative to improve sperm quality of cryopreserved equine semen. This work aimed to improve stallion semen quality after freezing by adding CoQ-10 to the cryopreservation protocol. Seven saddle stallions were utilized. Each animal was submitted to five semen collections and freezing procedures. For cryopreservation, each ejaculate was divided in three treatments: 1) Botucrio® diluent (control); 2) 50 μmol CoQ-10 added to Botucrio® diluent; 3) 1 mmol CoQ-10 added to Botucrio® diluent. Semen batches were analyzed for sperm motility characteristics (CASA), plasma and acrosomal membranes integrity and mitochondrial membrane potential (by fluorescence probes propidium iodide, Hoechst 33342, FITC-PSA and JC-1, respectively), alterations in cytoskeletal actin (phalloidin-FITC) and mitochondrial function (diaminobenzidine; DAB). The 1 mmol CoQ-10 treatment presented higher (P<0.05) amount (66.8%) of sperm cells with fully stained midpiece (indicating high mitochondrial activity) and higher (P<0.05) amount (81.6%) of cells without actin reorganization to the post-acrosomal region compared to control group (60.8% and 76.0%, respectively). It was concluded that the addition of 1 mmol CoQ-10 to the freezing diluent was more effective in preserving mitochondria functionality and cytoskeleton of sperm cells submitted to cryopreservation process.
This study aimed to assess the semen ubiquitin levels of stallions with good (GF) and poor semen freezability (PF) and to evaluate the relationship between sperm ubiquitination and sperm morphological defects. Five ejaculates from eight adult stallions (n = 40) were collected and cryopreserved. Then, the ubiquitin level in equine sperm cells was assessed by immunohistochemistry with epifluorescence microscopy, and sperm morphology was assessed by differential interference contrast microscopy. Sperm cells were classified according to the intensity (classification 1: from I to IV; I = very low ubiquitin intensity and IV = very high ubiquitin intensity) and location of ubiquitin staining (classification 2). Statistical analyses were performed using SAS software (version 9.4), and p ≤ .05 was considered significant. We observed that PF stallions showed higher percentages (p < .05) of sperm cells with high ubiquitination (11.82% of ubiquitin intensity grade I, 39.13% of ubiquitin intensity grade II, 27.25% of ubiquitin intensity grade III, and 20.67% of grade IV), while GF stallions showed higher percentages (p < .05) of sperm cells with lower staining intensity (28.52% grade I, 59.83% grade II, 7.92% grade III, and 7.02% grade IV). Furthermore, for PF stallions, 23 significant correlations were detected (p < .05) between sperm abnormalities and ubiquitin intensity in different sperm regions. Increased ubiquitination of the sperm head, midpiece, and tail was positively correlated with their respective morphological defects. We concluded that high sperm ubiquitin levels are observed in ejaculates from stallions with poor semen quality (poor freezability), and ubiquitin marking in specific cellular locations can identify sperm morphological defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.