The present work focus the study of cortical bone samples of different origins (human and animal) subjected to different calcination temperatures (600, 900 and 1200 8C) with regard to their chemical and structural properties. For that, not only standard techniques such as thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy were used but also mercury intrusion porosimetry. The latter technique was applied to evaluate the effects of the temperature on the microstructure of the calcined samples regarding porosity and pore size distribution.Although marked alterations in structure and mineralogy of the bone samples on heating were detected, these alterations were similar for each specimen. At 600 8C the organic component was removed and a carbonate apatite was obtained. At 900 8C, carbonate was no longer detected and traces of CaO were found at 1200 8C. Crystallinity degree and crystallite size progressively increased with the calcination temperature, contrary to porosity that strongly decreased at elevated temperatures. In fact, relatively to the control samples, a significant increase in porosity was found in samples calcined at 600 8C (reaching values around 50%). At higher temperatures, a dramatic decrease was observed, reaching, at 1200 8C, values comparable to those of the non-calcined bone. #
The present work focuses on the physicochemical characterization of selected mineral-based biomaterials that are frequently used in dental applications. The selected materials are commercially available as granules from different biological origins: bovine, porcine, and coralline. Natural and calcined human bone were used for comparison purposes. Besides a classical rationalization of chemical composition and crystallinity, a major emphasis was placed on the measurement of various morphostructural properties such as particle size, porosity, density, and specific surface area. Such properties are crucial to acquiring a full interpretation of the in vivo performance. The studied samples exhibited distinct particle sizes (between 200 and 1000 lm) and shapes. Mercury intrusion revealed not only that the total sample porosity varied considerably (33% for OsteoBiol 1 , 50% for PepGen P-15 1 , and 60% for BioOss 1 ) but also that a significant percentage of that porosity corresponded to submicron pores. Biocoral 1 was not analyzed by this technique as it possesses larger pores than those of the porosimeter upper limit. The density values determined for the calcined samples were close to the theoretical values of hydroxyapatite. However, the values for the collagenated samples were lower, in accordance with their lower mineral content. The specific surface areas ranged from less than 1 m 2 /g (Biocoral) up to 60 m 2 /g (BioOss). The chemical and phase composition of most of the samples, the exception being Biocoral (aragonite), were hydroxyapatite based. Nonetheless, the samples exhibited different organic material content as a consequence of the distinct heat treatments that each had received. '
Diffusion-weighted imaging is a potential resource as a coadjutant of MRI in the differentiation between benign and malignant lesions. Such imaging can be performed without a significant increase in examination time, especially because it can be done with lower b values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.