Small renal masses have been diagnosed increasingly in recent decades, allowing surgical treatment by partial nephrectomy. This treatment option is associated with better renal function preservation, in comparison with radical nephrectomy. However, for obtaining a bloodless field during surgery, occlusion of renal artery and veins is often required, which results in transitory ischemia. The renal ischemia-reperfusion injury is associated with increased reactive oxygen species production leading to renal tissue damage. Thus, the use of antioxidants has been advocated in the partial nephrectomy perioperative period. Several antioxidants were investigated in regard to renal ischemia-reperfusion injury. The present manuscript aims to present the literature on the most commonly studied antioxidants used during partial nephrectomy. The results of experimental and clinical studies using antioxidants during partial nephrectomy are reported. Further, alimentary sources of some antioxidants are presented, stimulating future studies focusing on perioperative antioxidant-rich diets.
Previous studies have demonstrated that the pig collecting system heals after partial nephrectomy without closure. Recently, a study in sheep showed that partial nephrectomy without closure of the collecting system resulted in urinary leakage and urinoma. The aim of this study was to present detailed anatomical findings on the intrarenal anatomy of the sheep. Forty two kidneys were used to produce tridimensional endocasts of the collecting system together with the intrarenal arteries. A renal pelvis which displayed 11-19 (mean of 16) renal recesses was present. There were no calices present. The renal artery was singular in each kidney and gave two primary branches one to the dorsal surface and one to ventral surface. Dorsal and ventral branches of the renal artery were classified based on the relationship between their branching pattern and the collecting system as: type I (cranial and caudal segmental arteries), type II (cranial, middle and caudal segmental arteries) or type III (cranial, cranial middle, caudal middle, and caudal segmental arteries). Type I was the most common branching pattern for the dorsal and ventral branches of the renal artery. The arterial supply of the caudal pole of the sheep kidney supports its use as an experimental model due to the similarity to the human kidney. However, the lack of a retropelvic artery discourages the use of the cranial pole in experiments in which the arteries are an important aspect to be considered. Anat Rec, 299:405-411, 2016. V C 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.