The present paper is devoted to the solvability of various two-point boundary value problems for the equation y(4)=f(t,y,y′,y″,y‴), where the nonlinearity f may be defined on a bounded set and is needed to be continuous on a suitable subset of its domain. The established existence results guarantee not just a solution to the considered boundary value problems but also guarantee the existence of monotone solutions with suitable signs and curvature. The obtained results rely on a basic existence theorem, which is a variant of a theorem due to A. Granas, R. Guenther and J. Lee. The a priori bounds necessary for the application of the basic theorem are provided by the barrier strip technique. The existence results are illustrated with examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.