Understanding the evolutionary history of microbial pathogens is critical for mitigating the impacts of emerging infectious diseases on economically and ecologically important host species. We used a genome resequencing approach to resolve the evolutionary history of an important microbial pathogen, the chytrid Batrachochytrium dendrobatidis (Bd), which has been implicated in amphibian declines worldwide. We sequenced the genomes of 29 isolates of Bd from around the world, with an emphasis on North, Central, and South America because of the devastating effect that Bd has had on amphibian populations in the New World. We found a substantial amount of evolutionary complexity in Bd with deep phylogenetic diversity that predates observed global amphibian declines. By investigating the entire genome, we found that even the most recently evolved Bd clade (termed the global panzootic lineage) contained more genetic variation than previously reported. We also found dramatic differences among isolates and among genomic regions in chromosomal copy number and patterns of heterozygosity, suggesting complex and heterogeneous genome dynamics. Finally, we report evidence for selection acting on the Bd genome, supporting the hypothesis that protease genes are important in evolutionary transitions in this group. Bd is considered an emerging pathogen because of its recent effects on amphibians, but our data indicate that it has a complex evolutionary history that predates recent disease outbreaks. Therefore, it is important to consider the contemporary effects of Bd in a broader evolutionary context and identify specific mechanisms that may have led to shifts in virulence in this system.
The recent decline in populations of European salamanders caused by the chytrid fungus Batrachochytrium salamandrivorans ( Bsal ) has generated worldwide concern, as it is a major threat to amphibians. Evaluation of the areas most suitable for the establishment of Bsal combined with analysis of the distribution of salamander species could be used to generate and implement biosecurity measures and protect biodiversity at sites with high salamander diversity. In this study, we identified the areas most suitable for the establishment of Bsal in Mexico. Mexico has the second-highest salamander species diversity in the world; thus, we identified areas moderately to highly suitable for the establishment of Bsal with high salamander diversity as potential hotspots for surveillance. Central and Southern Mexico were identified as high-risk zones, with 13 hotspots where 30% of Mexican salamander species occur, including range-restricted species and endangered species. We propose that these hotspots should be thoroughly monitored for the presence of Bsal to prevent the spread of the pathogen if it is introduced to the country.
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a devastating infectious disease of amphibians. Retrospective studies using museum vouchers and genetic samples supported the hypothesis that Bd colonized Mexico from North America and then continued to spread into Central and South America, where it led to dramatic losses in tropical amphibian biodiversity (the epizootic wave hypothesis). While these studies suggest that Bd has been in Mexico since the 1970s, information regarding the historical and contemporary occurrence of different pathogen genetic lineages across the country is limited. In the current study, we investigated the historical and contemporary patterns of Bd in Mexico. We combined the swabbing of historical museum vouchers and sampling of wild amphibians with a custom Bd genotyping assay to assess the presence, prevalence, and genetic diversity of Bd over time in Mexico. We found Bd-positive museum specimens from the late 1800s, far earlier than previous records and well before recent amphibian declines. With Bd genotypes from samples collected between 1975-2019, we observed a contemporary dominance of the global panzootic lineage in Mexico and report four genetic subpopulations and potential for admixture among these populations. The observed genetic variation did not have a clear geographic signature or provide clear support for the epizootic wave hypothesis. These results provide a framework for testing new questions regarding Bd invasions and their temporal relationship to observed amphibian declines in the Americas.
Emergent infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) represents one of the major causes of biodiversity loss in amphibians. While Bd has affected amphibians worldwide, Bsal remains restricted to Asia and Europe, but also could be a major threat for salamanders in the Western hemisphere, including the 320 bolitoglossine species described. Here, we predict the suitable areas for Bsal in the Neotropics and assess its potential impact on bolitoglossine diversity. For this, we determined the geographic patterns of taxonomic, phylogenetic, and functional diversity for bolitoglossines and modeled the potential distribution of Bsal in the Neotropics. We identified which species and regions could be at risk from an eventual introduction of Bsal in the region, quantified the degree of overlap between regions of high diversity and the suitable conditions for the pathogen, and considered species IUCN Red List status, and geographic range size. We found that regions of high taxonomic, phylogenetic, and functional diversity are concentrated in the Trans‐Mexican Volcanic Belt, Sierra Madre Oriental, the southern portion of Sierra Madre del Sur and the mountains of Oaxaca in México, as well as the Chiapan‐Guatemalan highlands, and the Cordilleras of Costa Rica and Panama. Alarmingly, the regions of high diversity for bolitoglossines and over 75% of the ranges of the more threatened species could be affected by Bsal. Given the unknown vulnerability of these species, we strongly recommend measures to avoid the introduction of Bsal in the continent. Abstract in Spanish is available with online material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.