In this study, natural linseed oil, hard wax oil, and hard wax, commonly used as finishes for wooden furniture and parquet, were used for surface finishes on Turkey oak wood (Quercus cerris L.), thermally modified at temperatures of 175 °C and 195 °C for 4 h. Several resistance surface properties were investigated. The mechanical resistance properties of all surface finishes were very much allied to interactions between the finish and the type of substrate. The adhesion strength and impact resistance decreased if higher temperature was used for thermal modification of the substrate. The surface hardness and the resistance to abrasion were high and increased slightly with increasing temperature during thermal modification of wood. It was also found that surface adhesion, hardness and resistance to impact were very much related to interactions between the coating film and the substrate. The resistance properties of finishes, such as resistance to cold liquids and mold, were mainly influenced by the type of the surface finish. The resistance to cold liquids increased in the order: surface finish with hard wax < linseed oil < finish system of linseed oil + hard wax oil. The lowest resistance to cold liquids showed up in condensed milk and sanitizer. Resistance to Aspergillus niger and Penicillium purpurogenum was relatively weak, however apparently improved during the first 7 days of the fungal test; the surfaces were covered with a lower distribution density of fungal mycelium after 21 days of the fungal test. Individual surface performances of oil and wax-based surface finishes on native wood were different from thermally modified wood.
The surface quality of silicone resin coating on the veneer surface was evaluated. Silicone resins of various types (weakly, moderately, strongly hydrophobic, and hydrophilic resins) were applied on veneer and cured. The quality of the coatings was assessed according to the impact resistance of the surface and the resistance to cold liquids (acetic acid, citric acid, ethanol, sodium carbonate, sodium chloride, cleaner SAVO). The gloss value of silicone coatings on the veneer surface was determined from the aesthetic qualities. Radially sliced beech, oak, walnut, and ash veneers were tested. Veneer surface roughness was measured before and after modification with the silicone resins. The results obtained show that after modification by silicone resins, the surface roughness of the veneers was not significantly different from that of resin-free veneers. Impact resistance testing showed that intrusions on veneer surfaces with silicone coatings were free of cracks visible to the naked eye. Surface resistance to cold liquids on the surfaces with silicone coatings was lower if compared to that of commonly used coatings. In some cases, the surfaces showed strong damage, mostly without changing the structure of the coating, after only 10 min exposure to cold liquid. The gloss value of silicone coatings on wood veneers was graded as matte to semi-gloss.
This paper deals with the influence of the type of transparent surface finish on the change of colour of the surfaces of native wood, and thermally treated wood, with saturated water vapour. In the experiment, alder, European beech, Paper birch, and Norway maple wood were thermally treated at a temperature of 135 °C under saturated water vapour for six hours. Three various types of surface finishes (acrylic-polyurethane, polyacrylic and aldehyde resin, and alkyd resin) were applied onto the wood surfaces. The colours of the surfaces in the system, CIE L*a*b* (lightness, coordinates a* and b*, chroma and hue angle), were measured during finishing and natural ageing behind glass windows in an interior, over a period of 60 days. The results show that the changes in the yellowness index, and the total colour differences after the application of individual surface finishes to wood species, changed because of sunlight exposure. Moreover, it is clear that different wood finishes behaved differently on all of the wood species. An analysis is presented in this paper.
The effect of mechanical treatment of beech wood surface on quality of surface finish. The paper deals with the quality of three surface finishes intended into interior. Three types of coating materials were tested (polyurethane, waterborne, wax). Each type of the surface finish was created on beech wood surface in three various coating thicknesses. The coating thicknesses differed in number of coatings of the coating material. The surface finishes were evaluated according to the impact resistance and the resistance to abrasion. The polyurethane surface finish showed the lowest resistance to abrasion. If the film thickness was increasing, the resistance to abrasion was decreasing. The greatest differences in the resistance to abrasion, depending on the wood surface treatment, were found on the wax surface finish. In general, the waterborne surface finish showed the best resistance to abrasion. Pressing the wood surface before finishing increased the impact resistance of all three surface finishes. The damage of the surfaces was only of grade 2 (No cracks on the surface and the intrusion was only slightly visible). The lowest impact resistance of the surface finishes was found on grinded wood surface; the damage was graded as 4 (Visible large cracks at the intrusion). At the drop height of 400 mm, the effect of the film thickness on the impact resistance was no longer present on all differently mechanically treated surfaces.
Colour stability of surface finishes on thermally modified beech wood. The paper deals with the influence of the type of transparent surface finish on the change of colour of the surfaces of native beech wood and thermally modified wood. At the same time, the colour stability of three surface finishes on the surfaces of native and thermally modified beech wood was monitored. Beech wood was thermally modified at temperature of 125 °C for 6 hours. The thermal treatment was performed in a pressure autoclave APDZ 240, by the company Sundermann s.r.o in Banská Štiavnica. Three various types of surface finishes (synthetic, wax-oil, water-based) were applied onto the wood surfaces. The colour of the surfaces of native wood and thermally modified wood was measured in the system CIELab before and after surface finishing; the coordinates L*, a*, b*, C*ab and h*ab were measured. From the coordinates measured before and after surface finishing, the differences were calculated and then the colour difference ∆E* was calculated. Subsequently, the test specimens with the surface finishes were exposed to natural sunlight, behind glass in the interior for 60 days. The surface colour was measured at specified time of the exposure (10, 20, 30, 60 days). The results showed that the colour of the wood surfaces changed after application of the individual surface finishes; and the colour difference reached a change visible with a medium quality filter up to a high colour difference. The wax-oil surface finish caused a high colour difference on native wood and on thermally modified wood as well. On native beech wood, the lowest colour difference after exposure to sunlight was noticeable on the synthetic surface finish. On the surface of wood thermally modified, after exposure to sunlight, the lowest colour difference was noticeable on the surface with no surface finish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.