In the context of allergic immune responses, activation of STAT6 is pivotal for Th2-mediated IgE production and development of airway inflammation and hyperreactivity. We analyzed whether gene silencing of STAT6 expression by RNA interference was able to suppress allergen-induced immune and airway responses. Knockdown effectiveness of three different STAT6 siRNA molecules was analyzed in murine and human cell cultures. The most potent siRNA was used for further testing in a murine model of allergen-induced airway inflammation and airway hyperreactivity (AHR). BALB/c mice were sensitized with OVA/alum twice i.p. (days 1 and 14), and challenged via the airways with allergen (days 28–30). Intranasal application of STAT6 siRNA before and during airway allergen challenges reduced levels of infiltrating cells, especially of eosinophils, in the bronchoalveolar lavage fluid, compared with GFP siRNA-treated sensitized and challenged controls. Allergen-induced alterations in lung tissues (goblet cell hyperplasia, peribronchial inflammation with eosinophils and CD4 T cells) were significantly reduced after STAT6 siRNA treatment. Associated with decreased inflammation was a significant inhibition of the development of allergen-induced in vivo AHR after STAT6 siRNA treatment, compared with GFP siRNA-treated sensitized and challenged controls. Importantly, mRNA and protein expression levels of IL-4 and IL-13 in lung tissues of STAT6-siRNA treated mice were significantly diminished compared with sensitized and challenged controls. These data show that targeting the key transcription factor STAT6 by siRNA effectively blocks the development of cardinal features of allergic airway disease, like allergen-induced airway inflammation and AHR. It may thus be considered as putative approach for treatment of allergic airway diseases such as asthma.
Changes in cell function occur by specific patterns of intracellular Ca2+, activating Ca2+-sensitive proteins. The anoctamin (TMEM16) protein family has Ca2+-dependent ion channel activity, which provides transmembrane ion transport, and/or Ca2+-dependent phosphatidyl-scramblase activity. Using amino acid sequence analysis combined with measurements of ion channel function, we clarified the so far unknown Ano4 function as Ca2+-dependent, non-selective monovalent cation channel; heterologous Ano4 expression in HEK293 cells elicits Ca2+ activated conductance with weak selectivity of K+ > Na+ > Li+. Endogenously expressed Ca2+-dependent cation channels in the retinal pigment epithelium were identified as Ano4 by KO mouse-derived primary RPE cells and siRNA against Ano4. Exchanging a negatively charged amino acid in the putative pore region (AA702–855) into a positive one (E775K) turns Ano4-elicited currents into Cl− currents evidencing its importance for ion selectivity. The molecular identification of Ano4 as a Ca2+-activated cation channel advances the understanding of its role in Ca2+ signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.