Numerical and experimental investigation of a cross-flow water turbine ABSTRACT A numerical and experimental study was carried out for validation of a previously proposed design criterion for a cross-flow turbine and a new semi-empirical formula linking inlet velocity to inletpressure. An experimental test stand was designed to conduct a series of experiments and to measure the efficiency of the turbine designed based on the proposed criterion. The experimental efficiency was compared to that from numerical simulations performed using a RANS model with a shear stress transport (SST) turbulence closure. The proposed semi-empirical velocity formula was also validated against the numerical solutions for cross-flow turbines with different geometries and boundary conditions. The results confirmed the previous hydrodynamic analysis and thus can be employed in the design of the cross-flow turbines as well as for reducing the number of simulations needed to optimize the turbine geometry.
The potential energy of the water in Water Distribution Networks (WDNs) usually exceeds the amount needed for delivery and consumption and, at the present time, it is mainly dissipated through Pressure Reducing Valves (PRVs) or Open Water Tanks. The present study suggests the use of a new energy-producing device, a Cross-flow turbine with positive outlet pressure named PRS (Power Recovery System), which can provide the same service as PRVs and water tanks, with additional significant hydropower production. After a short presentation of the PRS, the management rules of the proposed device are laid out, according to two possible modes. In the 'passive' mode, the piezometric level downstream of the turbine is fixed at the sought after value, in the 'active' mode, the discharge is regulated according to the required value. The design criterion is then presented, based on a simple relationship linking dimensionless numbers. A PRS is finally designed for a typical water distribution network, serving the city of Palermo (Italy). The resulting cost-benefit analysis is compared with a similar one carried out in previous work for a regulation system based on the use of a Pump As Turbine (PAT). The comparison shows the improvement obtained by the use of the PRS, consisting of higher energy production, as well as lower construction and installation costs.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.