Stable association of the eight common Sm proteins with U1, U2, U4 or U5 snRNA to produce a spliceosomal snRNP core structure is required for snRNP biogenesis, including cap hypermethylation and nuclear transport. Here, the assembly of snRNP core particles was investigated in vitro using both native HeLa and in vitro generated Sm proteins. Several RNA‐free, heteromeric protein complexes were identified, including E.F.G, B/B’.D3 and D1.D2.E.F.G. While the E.F.G complex alone did not stably bind to U1 snRNA, these proteins together with D1 and D2 were necessary and sufficient to form a stable U1 snRNP subcore particle. The subcore could be chased into a core particle by the subsequent addition of the B/B’.D3 protein complex even in the presence of free competitor U1 snRNA. Trimethylation of U1 snRNA's 5′ cap, while not observed for the subcore, occurred in the stepwise‐assembled U1 snRNP core particle, providing evidence for the involvement of the B/B′ and D3 proteins in the hypermethylation reaction. Taken together, these results suggest that the various protein heterooligomers, as well as the snRNP subcore particle, are functional intermediates in the snRNP core assembly pathway.
The RNA components of small nuclear ribonucleoproteins (U snRNPs) possess a characteristic 5'-terminal trimethylguanosine cap structure (m3G cap). This cap is an important component of the nuclear localization signal of U snRNPs. It arises by hypermethylation of a cotranscriptionally added m7G cap. Here we describe an in vitro assay for the hypermethylation, which employs U snRNP particles reconstituted in vitro from purified components and subsequent analysis by m3G cap-specific immunoprecipitation. Complementation studies in vitro revealed that both cytosol and S-adenosylmethionine are required for the hypermethylation of an m7G-capped U1 snRNP reconstituted in vitro, indicating that the U1 snRNA-(guanosine-N2)-methyltransferase is a trans-active non-snRNP protein. Chemical modification revealed one cytoplasmic component required for hypermethylation and one located on the snRNP: these components have different patterns of sensitivity to modification by N-ethylmaleimide and iodoacetic acid (IAA). In the presence of cytosol and S-adenosylmethionine, an intact Sm core domain is a necessary and sufficient substrate for cap hypermethylation. These data, together with our observation that isolated native U1 snRNPs but not naked U1 RNA inhibit the trimethylation of in vitro-reconstituted U1 snRNP, indicate that the Sm core binds the methyltransferase specifically. Moreover, isolated native U2 snRNP also inhibits trimethylation of U1 snRNP, suggesting that other Sm-class U snRNPs might share the same methyltransferase. IAA modification of m7G-capped U1 snRNPs inhibited hypermethylation when they were microinjected into Xenopus oocytes and consequently also inhibited nuclear import. In contrast, modification with IAA of m3G-capped U1 snRNPs reconstituted in vitro did not interfere with their nuclear transport in oocytes. These data suggest that m3G cap formation and nuclear transport of U1 snRNPs are mediated by distinct factors, which require distinct binding sites on the Sm core of U1 snRNP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.