Planning systems for real-world applications need the ability to handle concurrency and numeric fluents. Nevertheless, the predominant approach to cope with concurrency followed by the most successful participants in the latest International Planning Competitions (IPC) is still to find a sequential plan that is rescheduled in a post-processing step. We present Temporal Fast Downward (TFD), a planning system for temporal problems that is capable of finding low-makespan plans by performing a heuristic search in a temporal search space. We show how the context-enhanced additive heuristic can be successfully used for temporal planning and how it can be extended to numeric fluents. TFD often produces plans of high quality and, evaluated according to the rating scheme of the last IPC, outperforms all state-of-the-art temporal planning systems.
Operator cost partitioning is a well-known technique to make admissible heuristics additive by distributing the operator costs among individual heuristics. Planning tasks are usually defined with non-negative operator costs and therefore it appears natural to demand the same for the distributed costs. We argue that this requirement is not necessary and demonstrate the benefit of using general cost partitioning. We show that LP heuristics for operator-counting constraints are cost-partitioned heuristics and that the state equation heuristic computes a cost partitioning over atomic projections. We also introduce a new family of potential heuristics and show their relationship to general cost partitioning.
Many heuristics for cost-optimal planning are based on linear programming. We cover several interesting heuristics of this type by a common framework that fixes the objective function of the linear program. Within the framework, constraints from different heuristics can be combined in one heuristic estimate which dominates the maximum of the component heuristics. Different heuristics of the framework can be compared on the basis of their constraints. With this new method of analysis, we show dominance of the recent LP-based state-equation heuristic over optimal cost partitioning on single-variable abstractions. We also show that the previously suggested extension of the state-equation heuristic to exploit safe variables cannot lead to an improved heuristic estimate. We experimentally evaluate the potential of the proposed framework on an extensive suite of benchmark tasks.
We empirically examine several ways of exploiting the information of multiple heuristics in a satisficing best-first search algorithm, comparing their performance in terms of coverage, plan quality, speed, and search guidance. Our results indicate that using multiple heuristics for satisficing search is indeed useful. Among the combination methods we consider, the best results are obtained by the alternation method of the "Fast Diagonally Downward" planner.
Action programming languages like Golog allow to define complex behaviors for agents on the basis of action representations in terms of expressive (first-order) logical formalisms, making them suitable for realistic scenarios of agents with only partial world knowledge. Often these scenarios include sub-tasks that require sequential planning. While in principle it is possible to express and execute such planning sub-tasks directly in Golog, the system can performance-wise not compete with state-of-the-art planners. In this paper, we report on our efforts to integrate efficient planning and expressive action programming in the PLATAS project. The theoretical foundation is laid by a mapping between the planning language PDDL and the Situation Calculus, which is underlying Golog, together with a study of how these formalisms relate in terms of expressivity. The practical benefit is demonstrated by an evaluation of embedding a PDDL planner into Golog, showing a drastic increase in performance while retaining the full expressiveness of Golog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.