Background. Skin infections occur commonly and often present therapeutic challenges to practitioners due to the growing concerns regarding multidrug-resistant bacterial, viral, and fungal strains. The antimicrobial properties of zinc sulfate and copper sulfate are well known and have been investigated for many years. However, the synergistic activity between these two metal ions as antimicrobial ingredients has not been evaluated in topical formulations. Objective. The aims of the present study were to (1) formulate topical creams and gels containing zinc and copper alone or in combination and (2) evaluate the in vitro antibacterial activity of these metal ions in the formulations. Method. Formulation of the gels and creams was followed by evaluating their organoleptic characteristics, physicochemical properties, and in vitro antibacterial activity against Escherichia coli and Staphylococcus aureus. Results. Zinc sulfate and copper sulfate had a strong synergistic antibacterial activity in the creams and gels. The minimum effective concentration was found to be 3 w/w% for both active ingredients against the two tested microorganisms. Conclusions. This study evaluated and confirmed the synergistic in vitro antibacterial effect of copper sulfate and zinc sulfate in a cream and two gels.
According to Google Trends, the number of searches for the term "blue light" has increased since 2004. 1 This indicates that concerns about blue light and attempts at obtaining protection from this potential threat have been on the rise. From computer filters-to makeup products and eye lenses, consumers are searching for the best items to protect themselves. 2 Makeup and skin care products with blue light claims have significantly grown by about 170% in 2020 and are expected to continue to grow as more scientific evidence is published about the effects of blue light. 3 2 | WHAT IS B LUE LI G HT ? Blue light is emitted visible light in wavelengths between 400 and 500 nm. 4 Blue light is generally referred to as high energy visible light as it is at the shortest wavelength, thus the highest energy, in the visible light spectrum (Figure 1). 5 This is not to get confused with the further classification as "low energy" or "high energy" within the 400 to 500 nm range. When at the higher end of the blue light range the light is known as low energy, while at the lower end it is known as high energy-yet blue light altogether is the highest in energy compared with the rest of the visible light spectrum. Also, as the name suggests, blue light is observed as blue. The main source of blue light is sunlight. Additional sources include digital screens, such as cellphones, computers, laptops, and TVs; light-emitting diodes
Abstract:The move toward green, sustainable, natural products has been growing in the cosmetic and personal care industry. Ingredients derived from marine organisms and algae are present in many cosmetic products. In this study, a new green ingredient, a wax (i.e., long-chain alkenones) derived from Isochyrsis sp., was evaluated as an alternative for cosmetic waxes. First, the melting point was determined (71.1-77.4 • C), then the alkenones' thickening capability in five emollients was evaluated and compared to microcrystalline wax and ozokerite. Alkenones were compatible with three emollients and thickened the emollients similarly to the other waxes. Then, lipsticks and lip balms were formulated with and without alkenones. All products remained stable at room temperature for 10 weeks. Lipstick formulated with alkenones was the most resistant to high temperature. Finally, alkenones were compared to three cosmetic thickening waxes in creams. Viscosity, rheology, and stability of the creams were evaluated. All creams had a gel-like behavior. Both viscosity and storage modulus increased in the same order: cream with alkenones < cetyl alcohol < stearic acid < glyceryl monostearate. Overall, alkenones' performance was comparable to the other three waxes. Alkenones can thus offer a potential green choice as a new cosmetic structuring agent.
The aim of this research was to investigate the stability of a lidocaine-loaded nanostructured lipid carrier dispersion at different temperatures, formulate a nanostructured lipid carrier gel, and test the penetration profile of lidocaine from the nanostructured lipid carrier gel using different skin penetration modeling methods. The formulations were characterized by laser diffraction, rheological measurements and microscopic examinations. Various in vitro methods were used to study drug release, diffusion and penetration. Two types of vertical Franz diffusion cells with three different membranes, including cellulose, Strat-M®, and heat separated human epidermis were used and compared to the Skin-parallel artificial membrane permeability assay (PAMPA) method. Results indicated that the nanostructured lipid carrier dispersion had to be gelified as soon as possible for proper stability. Both the Skin-PAMPA model and Strat-M® membranes correlated favorably with heat separated human epidermis in this research, with the Strat-M® membranes sharing the most similar drug permeability profile to an ex vivo human skin model. Our experimental findings suggest that even when the best available in vitro experiment is selected for modeling human skin penetration to study nanostructured lipid carrier gel systems, relevant in vitro/in vivo correlation should be made to calculate the drug release/permeation in vivo. Future investigations in this field are still needed to demonstrate the influence of membranes and equipment from other classes on other drug candidates.
Background: There are numerous cosmetic ingredients that have been identified to have blue light protection benefits. The urge to learn more about blue light protection claims has led to several substantiation test methods that can be utilized by companies to prove product efficacy. Aims: Part II of this article provides up-to-date information on cosmetic ingredients that can provide protection from blue light, and methods companies can use to substantiate blue light protection claims. Methods: An Internet search was completed using the Google Scholar database and a cosmetic ingredient supplier database (UL Prospector) for ingredients and relevant literature. Results: Multiple ingredient categories, for example, algae-derived ingredients, UV filters, botanical extracts, antioxidants, and vitamins, are available on the market to fight against blue light-induced skin damage. There is not a formal standardized method to test for blue light protection; however, spectrophotometers, imaging devices, measuring oxidative stress, and visual evaluations are some of the methods being used today. Conclusions: The number of ingredients launched for blue light protection and new methods developed to test products for blue light protection claims is expected to increase in the near future as we are learning more about the mechanism of damage that occurs in the skin upon blue light exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.