Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (FALS), and approximately 25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase type 1 (SOD1). Mutant (MT) SOD1 is thought to be pathogenic because it misfolds and aggregates. A number of transgenic mice have been generated that express different MTSOD1s as transgenes and exhibit an ALS-like disease. Although one study found that overexpression of human wild-type (WT) SOD1 did not affect disease in G85R transgenic mice, more recent reports claim that overexpression of WTSOD1 in other MTSOD1 transgenic mice hastened disease, raising a possibility that the effect of WTSOD1 overexpression in this FALS mouse model is mutant-specific. In order to clarify this issue, we studied the effect of WTSOD1 overexpression in a G85R transgenic mouse that we recently generated. We found that G85R/WTSOD1 double transgenic mice had an acceleration of disease onset and shortened survival compared with G85R single transgenic mice; in addition, there was an earlier appearance of pathological and immunohistochemical abnormalities. The spinal cord insoluble fraction from G85R/WTSOD1 mice had evidence of G85R-WTSOD1 heterodimers and WTSOD1 homodimers (in addition to G85R homodimers) with intermolecular disulfide bond cross-linking. These studies suggest that WTSOD1 can be recruited into disease-associated aggregates by redox processes, providing an explanation for the accelerated disease seen in G85R mice following WTSOD1 overexpression, and suggesting the importance of incorrect disulfide-linked protein as key to MTSOD1 toxicity.
Mutant superoxide dismutase type 1 (MTSOD1), the most common known cause of familial amyotrophic lateral sclerosis (FALS), is believed to cause FALS as a result of a toxicity of the protein.MTSOD1s with full dismutase enzymatic activity (e.g., G37R) and without any enzymatic activity (e.g., G85R) cause FALS, demonstrating that the ability of MTSOD1 to cause FALS is not dependent on the dismutase activity; however, it remains unclear whether MTSOD1 dismutase activity can influence disease phenotype. In the present study, we selectively knocked down G85R expression in particular cell types of G85R mice. Results following knockdown of G85R in motor neurons (MNs)/interneurons of G85R mice were similar to results from a published study involving knockdown of G37R in G37R mice; however, G85R knockdown in microglia/macrophages induced a prolonged early and late disease phase while G37R knockdown in the same cells only affected late phase. These results show that: (i) MN as well as non-MN expression of G85R, like G37R, has a significant effect on disease in transgenic mice -indicating the role of non-cell autonomous degeneration in both dismutase active and inactive MTSOD1. (ii) The effect of MTSOD1 expression in microglia/macrophages varies with different mutants, and may be influenced by the MTSOD1's dismutase activity.
Classically, white adipose tissue (WAT) was considered an inert component of connective tissue but is now appreciated as a major regulator of metabolic physiology and endocrine homeostasis. Recent work defining how WAT develops and expands in vivo emphasizes the importance of specific locations of WAT or depots in metabolic regulation. Interestingly, mature white adipocytes are integrated into several tissues. A new perspective regarding the in vivo regulation and function of WAT in these tissues has highlighted an essential role of adipocytes in tissue homeostasis and regeneration. Finally, there has been significant progress in understanding how mature adipocytes regulate the pathology of several diseases. In this review, we discuss these novel roles of WAT in the homeostasis and regeneration of epithelial, muscle, and immune tissues and how they contribute to the pathology of several disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.