The Long chain Diol Index (LDI) is a relatively new organic geochemical proxy for sea surface temperature (SST), based on the abundance of the C30 1,15-diol relative to the summed abundance of the C28 1,13-, C30 1,13-and C30 1,15-diols. Here we substantially extend and reevaluate the initial core top calibration by combining the original dataset with 172 data points derived from previously published studies and 262 newly generated data points. In total, we considered 595 globally distributed surface sediments with an enhanced geographical coverage compared to the original calibration. The relationship with SST is similar to that of the original calibration but with considerably increased scatter. The effects of freshwater input (e.g., river runoff) and long-chain diol contribution from Proboscia diatoms on the LDI were evaluated. Exclusion of core-tops deposited at a salinity < 32 ppt, as well as core-tops with high Probosciaderived C28 1,12-diol abundance, resulted in a substantial improvement of the relationship between LDI and annual mean SST. This implies that the LDI cannot be directly applied in regions with a strong freshwater influence or high C28 1,12-diol abundance, limiting the applicability of the LDI. The final LDI calibration (LDI=0.0.0325×SST+0.1082; R 2 = 0.88; n = 514) is not statistically different from the original calibration of Rampen et al. (2012)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.