Clinical translation of cell‐based products is hampered by their limited predictive in vivo performance. To overcome this hurdle, engineering strategies advocate to fabricate tissue products through processes that mimic development and regeneration, a strategy applicable for the healing of large bone defects, an unmet medical need. Natural fracture healing occurs through the formation of a cartilage intermediate, termed “soft callus,” which is transformed into bone following a process that recapitulates developmental events. The main contributors to the soft callus are cells derived from the periosteum, containing potent skeletal stem cells. Herein, cells derived from human periosteum are used for the scalable production of microspheroids that are differentiated into callus organoids. The organoids attain autonomy and exhibit the capacity to form ectopic bone microorgans in vivo. This potency is linked to specific gene signatures mimicking those found in developing and healing long bones. Furthermore, callus organoids spontaneously bioassemble in vitro into large engineered tissues able to heal murine critical‐sized long bone defects. The regenerated bone exhibits similar morphological properties to those of native tibia. These callus organoids can be viewed as a living “bio‐ink” allowing bottom‐up manufacturing of multimodular tissues with complex geometric features and inbuilt quality attributes.
Tissue engineered constructs have the potential to respond to the unmet medical need of treating deep osteochondral defects. However, current tissue engineering strategies struggle in the attempt to create patterned constructs with biologically distinct functionality. In this work, a developmentally-inspired modular approach is proposed, whereby distinct cartilaginous organoids are used as living building blocks. First, a hierarchical construct was created, composed of three layers of cartilaginous tissue intermediates derived from human periosteumderived cells: (i) early (SOX9), (ii) mature (COL2) and (iii) (pre)hypertrophic (IHH, COLX) phenotype. Subcutaneous implantation in nude mice generated a hybrid tissue containing one mineralized and one non-mineralized part. However, the non-mineralized part was represented by a collagen type I positive fibrocartilage-like tissue. To engineer a more stable articular cartilage part, iPSC-derived cartilage microtissues (SOX9, COL2; IHH neg) were generated.Subcutaneous implantation of assembled iPSC-derived cartilage microtissues resulted in a homogenous cartilaginous tissue positive for collagen type II but negative for osteocalcin.Finally, iPSC-derived cartilage microtissues in combination with the pre-hypertrophic cartilage organoids (IHH, COLX) could form dual tissues consisting of i) a cartilaginous safranin O positive and ii) a bony osteocalcin positive region upon subcutaneous implantation, corresponding to the pre-engineered zonal pattern. The assembly of functional building blocks, as presented in this work, opens possibilities for the production of complex tissue engineered implants by embedding zone-specific functionality through the use of pre-programmed living building blocks.
Xenogeneic‐free media are required for translating advanced therapeutic medicinal products to the clinics. In addition, process efficiency is crucial for ensuring cost efficiency, especially when considering large‐scale production of mesenchymal stem cells (MSCs). Human platelet lysate (HPL) has been increasingly adopted as an alternative for fetal bovine serum (FBS) for MSCs. However, its therapeutic and regenerative potential in vivo is largely unexplored. Herein, we compare the effects of FBS and HPL supplementation for a scalable, microcarrier‐based dynamic expansion of human periosteum‐derived cells (hPDCs) while assessing their bone forming capacity by subcutaneous implantation in small animal model. We observed that HPL resulted in faster cell proliferation with a total fold increase of 5.2 ± 0.61 in comparison to 2.7 ± 02.22‐fold in FBS. Cell viability and trilineage differentiation capability were maintained by HPL, although a suppression of adipogenic differentiation potential was observed. Differences in mRNA expression profiles were also observed between the two on several markers. When implanted, we observed a significant difference between the bone forming capacity of cells expanded in FBS and HPL, with HPL supplementation resulting in almost three times more mineralized tissue within calcium phosphate scaffolds. FBS‐expanded cells resulted in a fibrous tissue structure, whereas HPL resulted in mineralized tissue formation, which can be classified as newly formed bone, verified by μCT and histological analysis. We also observed the presence of blood vessels in our explants. In conclusion, we suggest that replacing FBS with HPL in bioreactor‐based expansion of hPDCs is an optimal solution that increases expansion efficiency along with promoting bone forming capacity of these cells. Stem Cells Translational Medicine 2019;8:810&821
We discovered that the assembly dynamics of bone and cartilage progenitor cells follow the same physical laws as the compaction of a shaken granular material. In control conditions, the self-assembly is consistent with the dewetting of a thin liquid film, with exponential relaxation dynamics. By weakening the force generation of the cell using Rho kinase inhibitor, we were able to steer the material from exhibiting liquid-to glass-like behavior.
Studies on monolayer cultures and whole-animal models for the prediction of the response of native human tissue are associated with limitations. Therefore, more and more laboratories are tending towards multicellular spheroids grown in vitro as a model of native tissues. In addition, they are increasingly used in a wide range of biofabrication methodologies. These 3D microspheroids are generated through a self-assembly process that is still poorly characterised, called cellular aggregation. Here, a system is proposed for the automated, non-invasive and high throughput monitoring of the morphological changes during cell aggregation. Microwell patterned inserts were used for spheroid formation while an automated microscope with 4x bright-field objective captured the morphological changes during this process. Subsequently, the acquired time-lapse images were automatically segmented and several morphological features such as minor axis length, major axis length, roundness, area, perimeter and circularity were extracted for each spheroid. The method was quantitatively validated with respect to manual segmentation on four sets of ± 60 spheroids. The average sensitivities and precisions of the proposed segmentation method ranged from 96.67–97.84% and 96.77–97.73%, respectively. In addition, the different morphological features were validated, obtaining average relative errors between 0.78–4.50%. On average, a spheroid was processed 73 times faster than a human operator. As opposed to existing algorithms, our methodology was not only able to automatically monitor compact spheroids but also the aggregation process of individual spheroids, and this in an accurate and high-throughput manner. In total, the aggregation behaviour of more than 700 individual spheroids was monitored over a duration of 16 hours with a time interval of 5 minutes, and this could be increased up to 48,000 for the described culture format. In conclusion, the proposed system has the potential to be used for unravelling the mechanisms involved in spheroid formation and monitoring their formation during large-scale manufacturing protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.