Robotic 3D printing applications are rapidly growing in architecture, where they enable the introduction of new materials and bespoke geometries. However, current approaches remain limited to printing on top of a flat build bed. This limits robotic 3D printing’s impact as a sustainable technology: opportunities to customize or enhance existing elements, or to utilize complex material behaviour are missed. This paper addresses the potentials of conformal 3D printing and presents a novel and robust workflow for printing onto unknown and arbitrarily shaped 3D substrates. The workflow combines dual-resolution Robotic Scanning, Neural Network prediction and printing of PETG plastic. This integrated approach offers the advantage of responding directly to unknown geometries through automated performance design customization. This paper firstly contextualizes the work within the current state of the art of conformal printing. We then describe our methodology and the design experiment we have used to test it. We lastly describe the key findings, potentials and limitations of the work, as well as the next steps in this research.
Collaborative Robots, or Cobots, bring new possibilities for human-machine interaction within the fabrication process, allowing each actor to contribute with their specific capabilities. However creative interaction brings unexpected changes, obstacles, complexities and non-linearities which are encountered in real time and cannot be predicted in advance. This paper presents an experimental methodology for robotic path planning using Machine Learning. The focus of this methodology is obstacle avoidance. A neural network is deployed, providing a relationship between the robot's pose and its surroundings, thus allowing for motion planning and obstacle avoidance, directly integrated within the design environment. The method is demonstrated through a series of case-studies. The method combines haptic teaching with machine learning to create a task specific dataset, giving the robot the ability to adapt to obstacles without being explicitly programmed at every instruction. This opens the door to shifting to robotic applications for construction in unstructured environments, where adapting to the singularities of the workspace, its occupants and activities presents an important computational hurdle today.
Machine Learning (ML) is opening new perspectives for architectural fabrication, as it holds the potential for the profession to shortcut the currently tedious and costly setup of digital integrated design to fabrication workflows and make these more adaptable. To establish and alter these workflows rapidly becomes a main concern with the advent of Industry 4.0 in building industry. In this article we present two projects, which presents how ML can lead to radical changes in generation of fabrication data and linking these directly to design intent. We investigate two different moments of implementation: linking performance to the generation of fabrication data (KnitCone) and integrating the ability to adapt fabrication data in realtime as response to fabrication processes (Neural-Network Steered Robotic Fabrication). Together they examine how models can employ design information as training data and be trained to by step processes within the digital chain. We detail the advantages and limitations of each experiment, we reflect on core questions and perspectives of ML for architectural fabrication: the nature of data to be used, the capacity of these algorithms to encode complexity and generalize results, their task-specificness versus their adaptability and the tradeoffs of using them with respect to conventional explicit analytical modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.