In this article, we propose that new architectural design practices might be based on machine learning approaches to better leverage data-rich environments and workflows. Through reference to recent architectural research, we describe how the application of machine learning can occur throughout the design and fabrication process, to develop varied relations between design, performance and learning. The impact of machine learning on architectural practices with performance-based design and fabrication is assessed in two cases by the authors. We then summarise what we perceive as current limits to a more widespread application and conclude by providing an outlook and direction for future research for machine learning in architectural design practice.
The "Right to be Forgotten" is a privacy ruling that enables Europeans to delist certain URLs appearing in search results related to their name. In order to illuminate the effect this ruling has on information access, we conducted a retrospective measurement study of 3.2 million URLs that were requested for delisting from Google Search over five years. Our analysis reveals the countries and anonymized parties generating the largest volume of requests (just 1,000 requesters generated 16% of requests); the news, government, social media, and directory sites most frequently targeted for delisting (17% of removals relate to a requester's legal history including crimes and wrongdoing); and the prevalence of extraterritorial requests. Our results dramatically increase transparency around the Right to be Forgotten and reveal the complexity of weighing personal privacy against public interest when resolving multi-party privacy conflicts that occur across the Internet. The results of our investigation have since been added to Google's transparency report.
CCS CONCEPTS• Security and privacy → Human and societal aspects of security and privacy;
Robotic 3D printing applications are rapidly growing in architecture, where they enable the introduction of new materials and bespoke geometries. However, current approaches remain limited to printing on top of a flat build bed. This limits robotic 3D printing’s impact as a sustainable technology: opportunities to customize or enhance existing elements, or to utilize complex material behaviour are missed. This paper addresses the potentials of conformal 3D printing and presents a novel and robust workflow for printing onto unknown and arbitrarily shaped 3D substrates. The workflow combines dual-resolution Robotic Scanning, Neural Network prediction and printing of PETG plastic. This integrated approach offers the advantage of responding directly to unknown geometries through automated performance design customization. This paper firstly contextualizes the work within the current state of the art of conformal printing. We then describe our methodology and the design experiment we have used to test it. We lastly describe the key findings, potentials and limitations of the work, as well as the next steps in this research.
While fabrication is becoming a well-established field for architectural robotics, new possibilities for modelling and control situate feedback, modelling methods and adaptation as key concerns. In this paper we detail two methods for implementing adaptation, in the context of Robotic Incremental Sheet Forming (ISF) and exemplified in the fabrication of a bridge structure. The methods we describe compensate for springback and improve forming tolerance by using localised in-process distance sensing to adapt tool-paths, and by using pre-process supervised machine learning to predict stringback and generate corrected fabrication models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.