Val34Leu polymorphism of the A subunit of coagulation factor XIII (FXIII-A) is located in the activation peptide (AP) just 3 amino acids away from the thrombin cleavage site. This mutation has been associated with a protective effect against occlusive arterial diseases and venous thrombosis; however, its biochemical consequences have not been explored. In the current study it was demonstrated that the intracellular stability and the plasma concentration of FXIII of different Val34Leu genotypes are identical, which suggests that there is no difference in the rate of synthesis and externalization of wild-type and mutant FXIII-A. In contrast, the release of AP by thrombin from the Leu34 allele proceeded significantly faster than from its wild-type Val34 counterpart. By molecular modeling larger interaction energy was calculated between the Leu34 variant and the respective domains of thrombin than between the Val34 variant and thrombin. In agreement with these findings, the activation of mutant plasma FXIII by thrombin was faster and required less thrombin than that of the wild-type variant. Full thrombin activation of purified plasma FXIII of different genotypes, however, resulted in identical specific transglutaminase activities. Similarly, the mean specific FXIII activity in the plasma was the same in the groups with wild-type, heterozygous, and homozygous variants. Faster activation of the Leu34 allele hardly could be associated with its presumed protective effect against venous thrombosis. No such protective effect was observed in a large group of patients with familial thrombophilia.
Val34Leu polymorphism of the A subunit of coagulation factor XIII (FXIII-A) is located in the activation peptide (AP) just 3 amino acids away from the thrombin cleavage site. This mutation has been associated with a protective effect against occlusive arterial diseases and venous thrombosis; however, its biochemical consequences have not been explored. In the current study it was demonstrated that the intracellular stability and the plasma concentration of FXIII of different Val34Leu genotypes are identical, which suggests that there is no difference in the rate of synthesis and externalization of wild-type and mutant FXIII-A. In contrast, the release of AP by thrombin from the Leu34 allele proceeded significantly faster than from its wild-type Val34 counterpart. By molecular modeling larger interaction energy was calculated between the Leu34 variant and the respective domains of thrombin than between the Val34 variant and thrombin. In agreement with these findings, the activation of mutant plasma FXIII by thrombin was faster and required less thrombin than that of the wild-type variant. Full thrombin activation of purified plasma FXIII of different genotypes, however, resulted in identical specific transglutaminase activities. Similarly, the mean specific FXIII activity in the plasma was the same in the groups with wild-type, heterozygous, and homozygous variants. Faster activation of the Leu34 allele hardly could be associated with its presumed protective effect against venous thrombosis. No such protective effect was observed in a large group of patients with familial thrombophilia.
BackgroundAspirin resistance established by different laboratory methods is still a debated problem. Using COX1 specific methods no aspirin resistance was detected among healthy volunteers. Here we tested the effect of chronic aspirin treatment on platelets from patients with stable coronary artery disease. The expression of COX2 mRNA in platelets and its influences on the effect of aspirin was also investigated.MethodsOne hundred and forty four patients were enrolled in the study. The direct measurement of COX1 acetylation was carried out by monoclonal antibodies specific to acetylated and non-acetylated COX1 (acCOX1 and nacCOX1) using Western blotting technique. Arachidonic acid (AA) induced TXB2 production by platelets was measured by competitive immunoassay. AA induced platelet aggregation, ATP secretion and VerifyNow Aspirin Assay were also performed. COX2 and COX1 mRNA expression in platelets were measured in 56 patients by RT-qPCR.ResultsIn 138 patients only acCOX1 was detected, in the remaining six patients nacCOX1 disappeared after a compliance period. AA induced TXB2 production by platelets was very low in all patients including the 6 patients after compliance. AA induced platelet aggregation, secretion and with a few exceptions the VerifyNow Assay also demonstrated the effect of aspirin. Smoking, diabetes mellitus and inflammatory conditions did not influence the results. The very low amount of COX2 mRNA detected in 39 % of the investigated platelets did not influence the effect of aspirin.ConclusionsNo aspirin resistance was detected among patients with stable coronary artery disease. COX2 expression in platelets did not influence the effect of aspirin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.