Background: Manufacturers of orthodontic aligners suggest that users remove appliances every time they consume solid foods or any drink (except water). This is to avoid a color change within the clear thermoplastic material of which they are made. However, limited quantitative evidence exists to guide users and practitioners in this regard. Herein, we evaluated the color stability of the polymer forming three different American brands of aligners and the stain-removal potential of two cleansers to provide such guidelines. Methods: The removable appliances (300 specimens, 100 per brand) were exposed to different staining agents common in a regular diet (coffee, black tea, red wine, cola) or to a control solution in vitro over 12 h or 7 days. The three brands evaluated were Invisalign®, ClearCorrect® and Minor Tooth Movement®. These were then cleaned by using either Invisalign® cleaning crystals or the Cordless Sonic Cleaner combined with a Retainer Brite® tablet. The CIELAB color space approach was used to compare color changes (ΔE) in aligners before immersion (T0), after a 12h exposure (T1), after a 7-day exposure (T2) and after cleaning (T3). Statistical methods (Levene's test, ANOVA, Brunner-Langer model, Tukey's range test and t-test) were used to identify interactions between the brands themselves or between the brands and the cleaning methods. Statistical analyses were performed at the .05 significance level. Results: A 12-h or 7-day exposure to instant coffee or red wine significantly colored the Invisalign® aligners compared to the two other brands. Black tea created an important extrinsic color change for all three brands after 7 days. Clinically, both cleaning methods showed a better efficacy in removing stains from black tea compared to other staining agents. Conclusions: The Invisalign® aligners were more prone to pigmentation than the ClearCorrect® or the Minor Tooth Movement® devices after an exposure to coffee or red wine. Black tea caused important stains on the surface of the three tested brands. Both cleansing methods performed similarly.
We report on recent three-dimensional imaging performance and detection efficiency measurements obtained with 5 mm thick prototype CdZnTe detectors fabricated with orthogonal coplanar anode strips. In previous work, we have shown that detectors fabricated using this design achieve both very good energy resolution and sub-millimeter spatial resolution with fewer electronic channels than are required for pixel detectors. As electron-only devices, like pixel detectors, coplanar anode strip detectors can be fabricated in the thickness required to be effective imagers for photons with energies in excess of 500 keV. Unlike conventional double-sided strip detectors, the coplanar anode strip detectors require segmented contacts and signal processing electronics on only one surface. The signals can be processed to measure the total energy deposit and the photon interaction location in three dimensions. The measurements reported here provide a quantitative assessment of the detection capabilities of orthogonal coplanar anode strip detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.